Summary

高级别浆液性卵巢癌患者来源类器官的生成和培养

Published: January 06, 2023
doi:

Summary

患者来源类器官(PDO)是一种三维(3D)培养物,可以在 体外模拟肿瘤环境。在高级别浆液性卵巢癌中,PDO代表了研究新型生物标志物和治疗方法的模型。

Abstract

类器官是3D动态肿瘤模型,可以从患者来源的卵巢肿瘤组织,腹水或胸腔积液中成功生长,并有助于发现卵巢癌的新疗法和预测性生物标志物这些模型概括了克隆异质性、肿瘤微环境以及细胞间和细胞间基质相互作用。此外,它们已被证明在形态学、细胞学、免疫组织化学和遗传学上与原发肿瘤相匹配。因此,类器官有助于肿瘤细胞和肿瘤微环境的研究,并且优于细胞系。本协议描述了从患者肿瘤,腹水和胸腔积液样本中生成患者来源的卵巢癌类器官的不同方法,成功率高于97%。患者样品通过机械和酶消化分离成细胞悬浮液。然后使用基底膜提取物(BME)对细胞进行铺板,并用含有特异性用于培养高级别浆液性卵巢癌(HGSOC)的补充剂的优化生长培养基支持。在形成初始类器官后,PDO可以维持长期培养,包括传代以扩增以进行后续实验。

Introduction

2021 年,美国约有 21,410 名女性新诊断出患有上皮性卵巢癌,12,940 名女性死于这种疾病1。尽管在手术和化疗方面已经取得了足够的进展,但超过 70% 的晚期疾病患者会出现化疗耐药性,并在诊断后 5 年内死亡23。因此,迫切需要治疗这种致命疾病的新策略和具有代表性的、可靠的临床前研究模型。

由原发性卵巢肿瘤产生的癌细胞系和患者来源的异种移植物(PDX)是卵巢癌研究中使用的主要仪器。癌细胞系的一个主要优点是它们的快速扩增。然而,它们的持续培养导致表型和基因型改变,导致癌细胞系偏离原始原发性癌症肿瘤样本。由于癌细胞系和原发肿瘤之间存在差异,在细胞系中具有积极作用的药物测定在临床试验中无法具有相同的效果2。为了克服这些限制,使用了 PDX 模型。这些模型是通过将新鲜的卵巢癌组织植入免疫缺陷小鼠中创建的。由于它们是 体内 模型,它们更准确地类似于人类生物学特征,反过来,更能预测药物结果。然而,这些模型也有很大的局限性,包括生成它们所需的成本、时间和资源4.

PDO为临床前研究提供了一种替代模型,克服了癌细胞系和PDX模型的局限性。PDO概括了患者的肿瘤和肿瘤微环境,因此为临床前研究提供了理想的体外可处理模型235这些3D模型具有模拟原发性肿瘤的自组织功能,这是它们的二维(2D)细胞系对应物所不具备的特征。此外,这些模型已被证明在遗传和功能上代表其亲本肿瘤,因此是研究新疗法和生物过程的可靠模型。简而言之,它们提供类似于细胞系的长期扩增和储存能力,但也包括小鼠模型固有的微环境和细胞间相互作用46

本协议描述了从患者来源的肿瘤、腹水和胸腔积液样本中创建 PDO,成功率高于 97%。然后,PDO培养物可以扩增多代,并用于测试药物治疗敏感性和预测生物标志物。这种方法代表了一种可用于根据PDO的治疗反应进行个性化治疗的技术。

Protocol

为研究收集的所有人体组织标本都是根据机构审查委员会(IRB)批准的协议获得的。下面概述的方案是在无菌人体组织培养环境中进行的。从人类受试者那里获得了知情的书面同意。符合条件的患者必须有卵巢癌的诊断或推定诊断,愿意并能够签署知情同意书,并且至少年满18岁。肿瘤组织(恶性原发性肿瘤或转移部位)、腹水和胸腔积液是在手术时从同意的患者那里获得的。这些标本立即被运?…

Representative Results

为了产生PDO,将样品以机械和酶促方式消化成单细胞悬浮液。然后将细胞重悬于BME中,并补充专门设计的培养基(图3)。类器官通常在 10 天的时间范围内建立,之后它们在培养物中展示离散的类器官(图 4)。 图3</stron…

Discussion

卵巢癌由于其诊断时的晚期以及化疗耐药性的普遍发展而极其致命。通过利用癌细胞系和PDX模型,卵巢癌研究取得了许多进展;然而,显然需要一种更具代表性和负担得起的 体外 模型。PDO已被证明可以准确代表肿瘤异质性,肿瘤微环境以及其原发性肿瘤的基因组和转录组学特征,因此是各种研究方法的理想临床前模型,例如在药物治疗中实施类器官模型16

<p class="jove_…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Ron Bose,MD,PhD的指导,以及Barbara Blachut,MD的协助,以建立此协议。我们还要感谢华盛顿大学圣路易斯医学院妇产科和妇科肿瘤科、华盛顿大学院长学者计划和生殖科学家发展计划对该项目的支持。

Materials

1% HEPES Life Technologies 15630080
1% Penicillin-Streptomycin Fisher Scientific 30002CI
1.5 mL Eppendorf Tubes  Genesee Scientific 14125
10 cm Tissue Culture Dish  TPP 93100
10 mL Serological Pipet
100 µm Cell Filter MidSci 100ICS
15 mL centrifuge tubes Corning 430052
2 mL Cryovial Simport Scientific T301-2
2% Paraformaldehyde Fixative Sigma-Aldrich
37 °C water bath  NEST 602052
3dGRO R-Spondin-1 Conditioned Media Supplement Millipore Sigma SCM104
6 well plates TPP 92006
70% Ethanol Sigma-Aldrich R31541GA
A83-01 Sigma-Aldrich SML0788
Advanced DMEM/F12 ThermoFisher 12634028
Agar Lamda Biotech C121
B-27 Life Technologies 17504044
Centrifuge 
Cultrex Type 2 R&D Systems 3533-010-02 basement membrane extract
DNase I New England Bio Labs M0303S
DNase I Reaction Buffer New England Bio Labs M0303S
EGF PeproTech AF-100-15
FBS  Sigma-Aldrich F2442
FGF-10 PeproTech 100-26
FGF2 PeproTech 100-18B
gentleMACS C Tubes Miltenyi BioTech 130-096-334
gentleMACS Octo Dissociator with Heaters Miltenyi BioTech 130-096-427 We use the manufacturers protocol.
GlutaMAX Life Technologies 35050061 dipeptide, L-alanyl-L-glutamine
Hematoxylin and Eosin Staining Kit Fisher Scientific NC1470670
Histoplast Paraffin Wax Fisher Scientific 22900700
Microcentrifuge 
Mr. Frosty Freezing Container Fisher Scientific 07202363S
N-acetylcysteine Sigma-Aldrich A9165
Nicotinamide Sigma-Aldrich N0636
p1000 Pipette with Tips 
p200 Pipette with Tips 
Pasteur Pipettes 9" Fisher Scientific 1367820D
PBS Fisher Scientific MT21031CM
Pipet Controller
Prostaglandin E2 R&D Systems 2296
Puromycin  ThermoFisher A1113802
Recombinant Murine Noggin PeproTech 250-38
Recovery Cell Culture Freezing Medium Invitrogen 12648010
Red Blood Cell Lysis Buffer BioLegend 420301
ROCK Inhibitor (Y-27632) R&D Systems 1254/1
SB202190 Sigma-Aldrich S7076
T75 Flask MidSci TP90076
Tissue Culture Hood 
Tissue Embedding Cassette
TrypLE Express Invitrogen 12604013 animal origin-free, recombinant enzyme
Type II Collagenase Life Technologies 17101015
Vortex

References

  1. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68 (6), 394-424 (2018).
  2. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  3. Pauli, C., et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discovery. 7 (5), 462-477 (2017).
  4. Fujii, E., Kato, A., Suzuki, M. Patient-derived xenograft (PDX) models: Characteristics and points to consider for the process of establishment. Journal of Toxicologic Pathology. 33 (3), 153-160 (2020).
  5. Yang, J., et al. Application of ovarian cancer organoids in precision medicine: Key challenges and current opportunities. Frontiers in Cell and Developmental Biology. 9, 701429 (2021).
  6. Yang, H., et al. Patient-derived organoids: A promising model for personalized cancer treatment. Gastroenterology Report. 6 (4), 243-245 (2018).
  7. Karakasheva, T. A., et al. Generation and characterization of patient-derived head and neck, oral, and esophageal cancer organoids. Current Protocols in Stem Cell Biology. 53 (1), 109 (2020).
  8. Madison, B. B., et al. Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2. PLoS Genetics. 11 (8), 1005408 (2015).
  9. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  10. Murray, E., et al. HER2 and APC mutations promote altered crypt-villus morphology and marked hyperplasia in the intestinal epithelium. Cellular and Molecular Gastroenterology and Hepatology. 12 (3), 1105-1120 (2021).
  11. Hill, S. J., et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discovery. 8 (11), 1404-1421 (2018).
  12. Passarelli, M. C., et al. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nature Cell Biology. 24 (3), 307-315 (2022).
  13. Pleguezuelos-Manzano, C., et al. Establishment and culture of human intestinal organoids derived from adult stem cells. Current Protocols in Immunology. 130 (1), 106 (2020).
  14. Stumm, M. M., et al. Validation of a postfixation tissue storage and transport medium to preserve histopathology and molecular pathology analyses (total and phosphoactivated proteins, and FISH). American Journal of Clinical Pathology. 137 (3), 429-436 (2012).
  15. Feldman, A. T., Wolfe, D. Tissue processing and hematoxylin and eosin staining. Methods in Molecular Biology. 1180, 31-43 (2014).
  16. Ooft, S. N., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science Translational Medicine. 11 (513), (2019).
  17. Aisenbrey, E. A., Murphy, W. L. Synthetic alternatives to Matrigel. Nature Reviews Materials. 5 (7), 539-551 (2020).
  18. Nanki, Y., et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Scientific Reports. 10, 12581 (2020).
  19. Mead, B. E., et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nature Biomedical Engineering. 6 (4), 476-494 (2022).

Play Video

Cite This Article
Graham, O., Rodriguez, J., van Biljon, L., Fashemi, B., Graham, E., Fuh, K., Khabele, D., Mullen, M. Generation and Culturing of High-Grade Serous Ovarian Cancer Patient-Derived Organoids. J. Vis. Exp. (191), e64878, doi:10.3791/64878 (2023).

View Video