Summary

朊病毒蛋白质错误折叠循环扩增

Published: November 07, 2012
doi:

Summary

蛋白质错误折叠循环放大(PMCA)的的朊病毒转化和应变和物种障碍的研究是在体外试验。它也可以被用作朊病毒检测法。

Abstract

朊病毒是传染性病原体的动物和人类9,18导致的必然致命的传染性海绵状脑病(TSE)。的朊蛋白有两个不同的异构体,非传染性的主机的编码蛋 ​​白(PrP的C)和传染性蛋白(的PrP Sc)的,异常折叠的PrP〜C 8异构体。

朊病毒代理工作所面临的挑战之一是潜伏期长,临床症状主机接种后13前的发展。传统的授权和昂贵的动物生物测定研究。此外,生物化学和生物物理性能差的特点,其特殊的构象和聚集状态的PrP Sc的

的PrP sc可以转换的PrPÇ的PrP Sc的种子在体外 14。 PMCA是一种体外技术,需要阿德瓦ntage这种能力,利用超声和孵化周期产生大量的PrP Sc的 ,以更快的速度,从系统中含有过量的PrP C和微量的PrP Sc的种子19。这种技术已被证明,有效地重述物种和应变特异性的PrP Sc的转换,从蛋白Ç,干扰模拟朊病毒应变,并扩增的PrP Sc的非常低的水平,从受感染的组织,体液,及环境样品6,7,16, 23。

本文详细介绍了的PMCA协议,包括减少污染,产生一致的结果,这些结果和量化的建议。我们也讨论了几个的PMCA应用,包括株传染性朊病毒,朊病毒应变干扰,检测朊病毒的环境中产生和表征。

Protocol

1。准备设备使用Misonix 4000 3000或Misonix的超声波仪,(纽约法明达)连接到一个热电NESLAB EX-7水浴(纽因顿,NH),以保持恒定的温度为37°C。超声波清洗的样品在200微升薄壁的PCR管带与赛默飞世尔科技(马萨诸塞州沃尔瑟姆)获得的圆顶帽。 一个全新的超声发生器需要一个“磨合”期,连续工作9。甲两个月的磨合期由40秒的超声处理突发和孵育10分钟的周期与振幅电平设置?…

Representative Results

蛋白质错误折叠循环放大(PMCA)是用来放大的PrP Sc 在体外培养 7,12,14,19,24。一个成功的PrP Sc的扩增谱带强度的增加,如在图3中所示的PK抗朊病毒蛋白(19和30之间的迁移的kDa的仓鼠派生朊病毒株)的Western印迹上所示。后其谱带强度的增加PMCA表示扩增的PK-抗性的PrP Sc的材料。成功扩增仓鼠派生朊病毒蛋白,HaCWD和DY TME,在WB分析…

Discussion

放大传染性朊病毒蛋白质的挑战是在体内实验的潜伏期长和费用。 PMCA技术是一种经济有效的手段,放大传染性朊病毒剂。几个实验室已证实的能力PMCA准确放大朊病毒株在体外 7,第9,第12,14,19,24。

朊病毒疾病可以物种之间发送。贝森和湿地,有效地接种仓鼠传染性貂脑病,这就产生了两个不同的地鼠源性朊病毒株5。在一个优雅的学…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢Vesper的铁玛丽·拉莫斯博士的批判性阅读的手稿。这项工作是由国家研究资源中心(P20 RR0115635-6,C06 RR17417-01和G20RR024001次)和美国国家神经疾病与中风研究所(2R01 NS052609)。

Materials

Reagent / Equipment Manufacturer Cat. Number
Misonix 3000 Misonix S-3000
Misonix 4000 Misonix S-4000
Tenbroeck Tissue Grinder Kontes 885000-0007
Neslab EX-7 Water Bath Thermo Electron Neslab EX-7
0.2 ml PCR Tube Strips Thermo Scientific AB-0451
Triton X-100 Sigma Aldrich T9284-100ML
Complete Protease Inhibitor Roche 11 697 498 001
EDTA J.T. Baker 4040-00
DPBS Mallinckrodt Baker Mediatech 21-031-CV
Versi-Dry Lab Soakers Fisher Scientific 14 206 28
Repti Therm Heater Zoo Med Laboratories, Inc. RH-4

References

  1. Ayers, J. I., Schutt, C. R., Shikiya, R. A., Aguzzi, A., Kincaid, A. E., Bartz, J. C. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS pathogens. 7, e1001317 (2011).
  2. Barria, M. A., Mukherjee, A., Gonzalez-Romero, D., Morales, R., Soto, C. De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog. 5, e1000421 (2009).
  3. Bessen, R. A., Marsh, R. F. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096-2101 (1992).
  4. Bessen, R. A., Marsh, R. F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68, 7859-7868 (1994).
  5. Bessen, R. A., Marsh, R. F. Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J. Gen. Virol. 73, 329-334 (1992).
  6. Castilla, J., Gonzalez-Romero, D., Saa, P., Morales, R., De Castro, J., Soto, C. Crossing the species barrier by PrP(Sc) replication in vitro generates unique infectious prions. Cell. 134, 757-768 (2008).
  7. Castilla, J., Morales, R., Saa, P., Barria, M., Gambetti, P., Soto, C. Cell-free propagation of prion strains. EMBO J. 27, 2557-2566 (2008).
  8. Caughey, B., Raymond, G. J. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J. Biol. Chem. 266, 18217-18223 (1991).
  9. Deleault, N. R., Harris, B. T., Rees, J. R., Supattapone, S. Formation of native prions from minimal components in vitro. Proceedings of the National Academy of Sciences of the United States of America. 104, 9741-9746 (2007).
  10. Dickinson, A. G., Fraser, H., Meikle, V. M., Outram, G. W. Competition between different scrapie agents in mice. Nat. New Biol. 237, 244-245 (1972).
  11. Gonzalez-Romero, D., Barria, M. A., Leon, P., Morales, R., Soto, C. Detection of infectious prions in urine. FEBS Lett. 582, 3161-3166 (2008).
  12. Green, K. M., Castilla, J., Seward, T. S., Napier, D. L., Jewell, J. E., Soto, C., Telling, G. C. Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog. 4, e1000139 (2008).
  13. Hadlow, W. J., Race, R. E., Kennedy, R. C. Temporal distribution of transmissible mink encephalopathy virus in mink inoculated subcutaneously. J. Virol. 61, 3235-3240 (1987).
  14. Kocisko, D. A., Come, J. H., Priola, S. A., Chesebro, B., Raymond, G. J., Lansbury, P. T., Caughey, B. Cell-free formation of protease-resistant prion protein. Nature. 370, 471-474 (1994).
  15. Kurt, T. D., Telling, G. C., Zabel, M. D., Hoover, E. A. Trans-species amplification of PrP(CWD) and correlation with rigid loop 170N. Virology. 387, 3235-3240 (2009).
  16. Maddison, B. C., Baker, C. A., Terry, L. A., Bellworthy, S. J., Thorne, L., Rees, H. C., Gough, K. C. Environmental sources of scrapie prions. J. Virol. 84, 11560-11562 (2010).
  17. Nichols, T. A., Pulford, B., Wyckoff, A. C., Meyerett, C., Michel, B., Gertig, K., Hoover, E. A., Jewell, J. E., Telling, G. C., Zabel, M. D. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. Prion. 3, 171-183 (2009).
  18. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science. 216, 136-144 (1982).
  19. Saborio, G. P., Permanne, B., Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 411, 810-813 (2001).
  20. Saunders, S. E., Bartz, J. C., Vercauteren, K. C., Bartelt-Hunt, S. L. An enzymatic treatment of soil-bound prions effectively inhibits replication. Appl. Environ. Microbiol. 77, 4313-4317 (2011).
  21. Saunders, S. E., Shikiya, R. A., Langenfeld, K., Bartelt-Hunt, S. L., Bartz, J. C. Replication efficiency of soil-bound prions varies with soil type. Journal of virology. , (2011).
  22. Schutt, C. R., Bartz, J. C. Prion interference with multiple prion isolates. Prion. 2, 61-63 (2008).
  23. Shikiya, R. A., Ayers, J. I., Schutt, C. R., Kincaid, A. E., Bartz, J. C. Co-infecting prion strains compete for a limiting cellular resource. Journal of. 84, 5706-5714 (2010).
  24. Shikiya, R. A., Bartz, J. C. In vitro generation of high titer prions. Journal of virology. , (2011).
  25. Weber, P., Giese, A., Piening, N., Mitteregger, G., Thomzig, A., Beekes, M., Kretzschmar, H. A. Generation of genuine prion infectivity by serial PMCA. Veterinary microbiology. 123, 346-357 (2007).

Play Video

Cite This Article
Saunders, S. E., Bartz, J. C., Shikiya, R. A. Protein Misfolding Cyclic Amplification of Prions. J. Vis. Exp. (69), e4075, doi:10.3791/4075 (2012).

View Video