Summary

Modelos animales ex vivo e in vivo para lesiones mecánicas y químicas del epitelio corneal

Published: April 06, 2022
doi:

Summary

Aquí, se desarrollan modelos animales basados en ratones y conejos para lesiones mecánicas y químicas del epitelio corneal para detectar nuevas terapias y el mecanismo subyacente.

Abstract

La lesión corneal en la superficie ocular, incluyendo quemaduras químicas y traumatismos, puede causar cicatrices graves, simblefarón, deficiencia de células madre limbares corneales y provocar un defecto epitelial corneal grande y persistente. El defecto epitelial con la siguiente opacidad corneal y la neovascularización periférica resultan en una discapacidad visual irreversible y dificultan el manejo futuro, especialmente la queratoplastia. Dado que el modelo animal se puede utilizar como una plataforma efectiva de desarrollo de fármacos, aquí se desarrollan modelos de lesión corneal en el ratón y quemaduras alcalinas en el epitelio corneal del conejo. El conejo blanco de Nueva Zelanda se utiliza en el modelo de quema alcalina. Se pueden aplicar diferentes concentraciones de hidróxido de sodio en el área circular central de la córnea durante 30 s bajo anestesia intramuscular y tópica. Después de una copiosa irrigación salina normal isotónica, se eliminó el epitelio corneal suelto residual con rebaba corneal profundamente hasta la capa de Bowman dentro de esta área circular. La cicatrización de heridas se documentó mediante tinción con fluoresceína bajo luz azul cobalto. Se utilizaron ratones C57BL/6 en el modelo traumático de epitelio corneal murino. La córnea central murina se marcó con un punzón de piel, de 2 mm de diámetro, y luego se desbridó con un removedor de anillo de óxido corneal con una rebaba de 0,5 mm bajo un microscopio estereoscópico. Estos modelos se pueden utilizar prospectivamente para validar el efecto terapéutico de gotas para los ojos o agentes mixtos como las células madre, que potencialmente facilitan la regeneración epitelial corneal. Al observar la opacidad corneal, la neovascularización periférica y la congestión conjuntival con estereomicroscopio y software de imágenes, se pueden monitorear los efectos terapéuticos en estos modelos animales.

Introduction

La córnea humana consta de cinco capas principales y desempeña un papel fundamental en la refracción ocular para mantener la agudeza visual y la integridad estructural para proteger los tejidos intraoculares1. La parte más externa de la córnea es el epitelio corneal, compuesto por cinco a seis capas de células que se diferencian secuencialmente de las células basales y se mueven hacia arriba para desprenderse de la superficie ocular1. En comparación con la córnea en humanos y conejos de Nueva Zelanda, la córnea de ratón tiene una estructura corneal similar, pero una periferia más delgada que la parte central debido a un grosor reducido en el epitelio y el estroma2. Debido a su posición única en el sistema óptico ocular, muchos insultos externos como lesiones mecánicas, inoculación bacteriana y agentes químicos pueden poner en peligro fácilmente la integridad epitelial y provocar un defecto epitelial que amenaza la visión, queratitis infecciosa, fusión corneal e incluso perforación corneal.

Aunque varios agentes terapéuticos, como lubricantes, antibióticos, agentes antiinflamatorios, productos de autosuero y membrana amniótica ya se han utilizado para mejorar la reepitelización y reducir las cicatrices, otras posibles modalidades de tratamiento que pueden permitir la cicatrización de heridas, reducir la inflamación y suprimir la formación de cicatrices todavía se están desarrollando y probando en diferentes plataformas. Se han propuesto varios modelos animales para la cicatrización de heridas epiteliales corneales, incluida la eliminación del epitelio corneal con un removedor de anillo de óxido corneal en ratón diabético3, rasguños lineales sobre el epitelio corneal del ratón mediante una aguja estéril de 25 G para la inoculación bacteriana4, eliminación asistida por trepines del epitelio corneal mediante removedor de anillo de óxido corneal5, cauterización epitelial sobre la mitad de la córnea y el limbo6 , abrasión corneal de conejo facilitada por trefina por una hoja de bisturí opaca7, y lesión de la córnea bovina por congelación repentina en nitrógeno líquido8.

Además de la lesión mecánica al epitelio corneal, los agentes químicos también son insultos comunes a la superficie ocular, especialmente los agentes ácidos y alcalinos. El hidróxido de sodio (NaOH, 0.1-1 N para 30-60 s) es uno de los productos químicos comúnmente utilizados en modelos murinos y de conejo de quemaduras químicas corneales 9,10,11,12,13. El etanol al 100% también se había aplicado a la córnea en el modelo de quemadura química de rata, seguido de un desguace mecánico adicional utilizando una cuchilla quirúrgica14. Dado que el mantenimiento de una superficie ocular sana depende de unidades funcionales, incluidos los párpados, las glándulas de Meibomio, el sistema lagrimal, la conjuntiva y la córnea, los modelos animales in vivo tienen algunos méritos sobre las células epiteliales de córnea cultivadas ex vivo o los tejidos corneales. En este artículo, se demuestra el modelo de ratón de la herida por abrasión corneal y el modelo de conejo de quemadura alcalina corneal.

Protocol

Todos los procedimientos experimentales en estudios con animales fueron aprobados por el Comité de Ética de Investigación del Chang Gung Memorial Hospital y se adhirieron a la declaración ARVO para el uso de animales en la investigación oftálmica y de la visión. 1. Modelo de cicatrización de heridas ex vivo del epitelio corneal del ratón Preparación de los ratonesAdministrar anestesia general a ratones C57BL/6 mediante administración intra…

Representative Results

Modelo de cicatrización de heridas ex vivo del epitelio corneal del ratón:Después del desbridamiento in vivo del epitelio corneal del ratón con removedor de anillo de óxido corneal de mano, se puede encontrar un área corneal central ligeramente deprimida con tinción positiva de fluoresceína en el área central de 2 mm (Figura 3A-B). Después de cosechar el globo ocular del ratón, se fijó fáci…

Discussion

Los modelos de ratón y conejo de lesión corneal proporcionan una plataforma útil ex vivo e in vivo para monitorear la cicatrización de heridas, probar nuevas terapias y estudiar los mecanismos subyacentes de las vías de curación y tratamiento de heridas. Se pueden utilizar diferentes modelos animales para un experimento a corto o largo plazo, dependiendo del propósito de la investigación. Por ejemplo, después de crear un defecto epitelial en la córnea de ratón in vivo, se podría usa…

Disclosures

The authors have nothing to disclose.

Acknowledgements

El estudio fue financiado por el Consejo de Energía Atómica de Taiwán (Subvención No. A-IE-01-03-02-02), el Ministerio de Ciencia y Tecnología (Subvención No. NMRPG3E6202-3) y el Proyecto de Investigación Médica Chang Gung (Subvención No. CMRPG3H1281).

Materials

6/0 Ethicon vicryl suture Ethicon 6/0VICRYL tarsorrhaphy
Barraquer lid speculum katena K1-5355 15 mm
Barraquer needle holder Katena K6-3310 without lock
Barron Vacuum Punch 8.0 mm katena K20-2108 for cutting filter paper
C57BL/6 mice National Laboratory Animal Center RMRC11005 mouse strain
Castroviejo forceps 0.12 mm katena K5-2500
Corneal rust ring remover with 0.5 mm burr Algerbrush IITM; Alger Equipment Co., Inc. Lago Vista, TX CHI-675 for debridement of the corneal epithelium
Filter paper Toyo Roshi Kaisha,Ltd. 1.11
Fluorescein sodum ophthalmic strips U.S.P OPTITECH OPTFL100 staining for corneal epithelial defect
Ketamine hydrochloride Sigma-Aldrich 61763-23-3 intraperitoneal or intramuscular anesthetics
New Zealand White Rabbits Livestock Research Institute, Council of Agriculture,Executive Yuan Rabbit models
Normal saline TAIWAN BIOTECH CO., LTD. 100-120-1101
Proparacaine Alcon ALC2UD09 topical anesthetics
Skin biopsy punch 2mm STIEFEL 22650
Sodium chloride (NaOH) Sigma-Aldrich 1310-73-2 a chemical agent for alkali burn
Stereomicroscope Carl Zeiss Meditec, Dublin, CA SV11 microscope for surgery
Westcott Tenotomy Scissors Medium katena K4-3004
Xylazine hydrochloride 23.32 mg/10 mL Elanco animal health Korea Co., LTD. 047-956 intraperitoneal or intramuscular anesthetics

References

  1. Sridhar, M. S. Anatomy of cornea and ocular surface. Indian Journal of Ophthalmology. 66 (2), 190-194 (2018).
  2. Henriksson, J. T., McDermott, A. M., Bergmanson, J. P. G. Dimensions and morphology of the cornea in three strains of mice. Investigative Ophthalmology & Visual Science. 50 (8), 3648-3654 (2009).
  3. Wang, X., et al. MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes. 69 (6), 1264-1278 (2020).
  4. Ma, X., et al. Corneal epithelial injury-induced norepinephrine promotes Pseudomonas aeruginosa keratitis. Experimental Eye Research. 195, 108048 (2020).
  5. Chan, M. F., Werb, Z. Animal models of corneal injury. Bio Protocol. 5 (13), 1516 (2015).
  6. Lan, Y., et al. Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology & Visual Science. 53 (7), 3638-3644 (2012).
  7. Watanabe, M., et al. Promotion of corneal epithelial wound healing in vitro and in vivo by annexin A5. Investigative Ophthalmology & Visual Science. 47 (5), 1862-1868 (2006).
  8. Murataeva, N., et al. Cannabinoid CB2R receptors are upregulated with corneal injury and regulate the course of corneal wound healing. Experimental Eye Research. 182, 74-84 (2019).
  9. Carter, K., et al. Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomaterialia. 99, 247-257 (2019).
  10. Sanie-Jahromi, F., et al. Propagation of limbal stem cells on polycaprolactone and polycaprolactone/gelatin fibrous scaffolds and transplantation in animal model. Bioimpacts. 10 (1), 45-54 (2020).
  11. Sun, M. M., et al. Epithelial membrane protein (EMP2) antibody blockade reduces corneal neovascularization in an In vivo model. Investigative Ophthalmology & Visual Science. 60 (1), 245-254 (2019).
  12. Yang, Y., et al. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal. 25 (2), 501-511 (2013).
  13. Bai, J. Q., Qin, H. F., Zhao, S. H. Research on mouse model of grade II corneal alkali burn. International Journal of Ophthalmology. 9 (4), 487-490 (2016).
  14. Oh, J. Y., et al. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proceedings of the National Academy of Sciences of the United States of America. 107 (39), 16875 (2010).
  15. Wang, T., et al. Evaluation of the effects of biohcly in an in vivo model of mechanical wounds in the rabbit cornea. Journal of Ocular Pharmacology and Therapeutics. 35 (3), 189-199 (2019).
  16. Gong, Y., et al. Effect of nintedanib thermos-sensitive hydrogel on neovascularization in alkali burn rat model. International Journal of Ophthalmology. 13 (6), 879-885 (2020).
  17. Yao, L., et al. Role of mesenchymal stem cells on cornea wound healing induced by alkali burn. PLoS One. 7 (2), 30842 (2012).

Play Video

Cite This Article
Hung, K. H., Yeh, L. K. Ex Vivo and In Vivo Animal Models for Mechanical and Chemical Injuries of Corneal Epithelium. J. Vis. Exp. (182), e63217, doi:10.3791/63217 (2022).

View Video