Summary

伪多蒙多尼亚小殖民地文化及其藻酸盐的定量

Published: February 22, 2020
doi:

Summary

在这里,我们描述了一个生长条件,以培养伪多蒙多尼亚小殖民地变种。我们还描述了使用传统的尿酸卡巴佐尔测定法和基于藻酸盐的单克隆抗体(mAb)的ELISA检测和定量由P.aeruginosa产生的外糖藻酸盐的两种独立方法。

Abstract

假单组动物,一种机会性革兰氏阴性细菌病原体,可以过度产生外多糖藻酸盐,从而产生一种称为粘凝的独特表型。藻酸盐与慢性肺部感染有关,导致囊性纤维化 (CF) 患者预后不佳。了解调节藻酸盐生产的途径有助于制定针对藻酸盐形成的新型治疗策略。另一种与疾病相关的表型是小菌群变异(SCV)。SCV 是由于细菌生长缓慢,并且经常与抗菌素耐药性增加有关。在本文中,我们首先展示了一种由于苯丙胺生物合成突变而具有遗传定义的P.aeruginosa SCV的培养方法。补充氮碱,尿素或细胞氨酸,返回这些突变体的正常生长,表明存在一个拯救途径,从环境中清除自由碱。接下来,我们将讨论两种测量细菌藻酸盐的方法。第一种方法依靠多糖的水解到其尿酸单体,然后衍生与色原试剂,卡巴佐尔,而第二种方法使用ELISA基于市售的,藻酸盐特异性mAb。两种方法都需要一个标准曲线进行定量。研究还表明,该免疫法是藻酸盐定量的特异性,可用于临床标本的藻酸盐测量。

Introduction

慢性肺部感染与伪单多尼亚龙是囊性纤维化 (CF) 患者发病率和死亡率的主要原因。在幼儿期,患者被多种细菌病原体殖民,包括P.aeruginosa1,2的非粘胶分离物。小菌群变异(SCV)分离物的出现以及粘水井分离物是慢性感染发病的标志。SCV分离物具有很强的抗药性3,因为它们的生长速度缓慢4,这使得他们在治疗团和其他慢性感染5P.aeruginosa严重威慑。Al Ahmar等人6号的工作表明,SCV与通过新丙胺生物合成所联系的粘体之间存在联系。由于与苯丙胺生产有关的基因突变,苯丙胺饥饿导致非粘凝参考菌株PAO1和粘尿衍生物PAO581(PAO1mucA25)中的SCV表型。

尽管藻酸盐过度生产是CF慢性肺部感染的重要疾病标志物,但尚不清楚藻酸盐量与肺病理学之间是否存在直接相关性,也不清楚藻酸盐能否用作治疗7的预后标志物。藻酸盐生产主要由两个操作器调节,一个调节操作体(algUmucABCD)8,9和生物合成操作子(阿尔格Doperon)10,11。藻酸盐生产受到西格玛因子AlgU9、12(也称为AlgT)和反西格玛因子MucA13的降解的严格调节。从患者的痰样原位监测藻酸盐的产生的能力有助于开发新的治疗方案。

在这里,我们描述了一个生长条件,它检测由不能合成新热胺的突变体引起的SCV的存在。补充尿素和/或细胞氨酸,苯丙胺核苷核苷酸的氮碱,到介质激活抢救途径,从而恢复突变体的正常生长。这种针对这些特定SCV突变体的生长方法可用作筛选方法,以识别患者样本中的丙酰胺突变。此外,我们还讨论了两种检测和测量由P.aeruginosa产生和分泌的藻酸盐的方法。第一种是使用高浓度酸降解多糖的传统方法14、15、16,然后添加一个色度指标来定量样品中的浓度。第二种方法,在我们的实验室开发,利用酶链接免疫吸附测定(ELISA)使用QED生物科学开发的抗藻酸盐单克隆抗体(mAb)。ELISA 方法证明比尿酸测定更具体、更敏感,由于避免了高浓度硫酸,因此可以更安全地使用。ELISA 能够直接用于患者痰样测量藻酸盐,因此可以开发为监测诊断工具,以跟踪感染不同时期肺部存在的藻酸盐量。

Protocol

1. SCV 生长条件及打捞路径的生理激活 SCV 检测。 在预热的伪单一酶(PIA)板上,在37°C生长48小时,在预加热的伪单子分离琼脂(PIA)板上,将P.aeruginosa菌株PAO1、PAO1+pyrD、PAO581和PAO581_pyrD分发。在生长板上识别具有 SCV 表型的单一菌落隔离物(菌群大小为 1⁄3 mm,而不是正常的 3⁄5 mm 菌落大小)。 重复步骤 1.1.1 以获得 SCV 的纯隔离。注:由于SCV?…

Representative Results

图1显示了PAO1和PAO581的板,在pyrD基因(pyrimidine生物合成通路的一个基因)中,无论是否在帧内删除,导致SCV6。PAO1 SCV突变体在响应尿液补充时恢复正常生长(图1A,B)。此外,PAO581®pyrD SCV突变体通过相同的尿素处理返回到粘液,因为母菌株PAO581具有额外的MucA25突变(…

Discussion

SCV 和藻酸盐都是与多种慢性感染相关的重要疾病标志物。因此,能够生长SCV以及研究由P.aeruginosa调节和生产的藻酸盐是发现这些慢性疾病的新疗法不可或缺的。

SCV菌株是出了名的难以生长,由于其缓慢的生长速度4相比,其他P.aeruginosa菌株,这有助于他们的抗微生物药物耐药性3。我们的工作确定了一种特定形式的P.aeruginosa<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生研究院(NIH)授予R44GM113545和P20GM103434的支持。

Materials

1-Step Ultra TMB-ELISA Thermo Scientific 34028 via Fisher Scientific
Absolute Ethanol (200 Proof) Fisher Scientific BP2818-4 Molecular Bio-grade
Accu Block Digital Dry Bath Labnet NC0205808 via Fisher Scientific
Assay Plates 96-well CoStar 2021-12-20
Bench Top Vortex-Genie 2 Scientific Industries G560
Boric Acid Research Products International Corp. 10043-35-3
Cabinet Incubator VWR 1540
Carbazole Sigma C-5132
Carbonate-Bicarbonate Buffer Sigma C3041
Centrifuge Tubes (50 ml) Fisher Scientific 05-539-13 via Fisher Scientific
Culture Test Tubes Fisher Scientific 14-956-6D via Fisher Scientific
Cuvette Polystyrene (1.5 ml) Fisher Scientific 14955127 via Fisher Scientific
Cytosine Acros Organics 71-30-7
Diposable Inoculation Loops Fisher Scientific 22-363-597
D-Mannuronic Acid Sodium Sigma Aldrich SMB00280
FMC Alginate FMC 2133
Glycerol Fisher Scientific BP906-5 For Molecular Biology
Mouse Anti-Alginate Monoclonal Antibody QED Biosciences N/A Lot # :15725/15726
Phosphate Buffered Saline Powder (PBS) Sigma P3813
Pierce Goat Anti-Mouse Poly-HRP Antibody Thermo Scientific 32230 via Fisher Scientific
Potassium Hydroxide Fisher Scientific 1310-58-3 via Fisher Scientific
Prism 7 GraphPad
Pseudomonas Isolation Agar (PIA) Difco 292710 via Fisher Scientific
Pseudomonas Isolation Broth (PIB) Alpha Biosciences P16-115 via Fisher Scientific
Round Toothpicks Diamond Any brand
Seaweed alginate (Protanal CR 8133) FMC Corporation
Skim Milk Difco 232100 via Fisher Scientific
SmartSpec Plus Spectrophotometer BioRad 170-2525 or preferred vendor
Sodium Chloride (NaCl) Sigma S-5886
SpectraMax i3x Multi-mode MicroPlate Reader Molecular Devices i3x or preferred vendor
Sterile Petri Dish 100mm x 15mm Fisher Scientific FB0875713 via Fisher Scientific
Sulfuric Acid Fisher Scientific A298-212 Technical Grade
Sulfuric Acid (2 Normal -Stop Solution) R&D Systems DY994
Tween 20 Sigma P2287
Uracil Acros Organics 66-22-8

References

  1. Govan, J. R., Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiological Reviews. 60 (3), 539-574 (1996).
  2. Hogardt, M., Heesemann, J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. International Journal of Medical Microbiology. 300 (8), 557-562 (2010).
  3. Evans, T. J. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiology. 10 (2), 231-239 (2015).
  4. Johns, B. E., Purdy, K. J., Tucker, N. P., Maddocks, S. E. Phenotypic and Genotypic Characteristics of Small Colony Variants and Their Role in Chronic Infection. Microbiology Insights. 8, 15-23 (2015).
  5. Pestrak, M. J., et al. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLoS Pathogones. 14 (2), e1006842 (2018).
  6. Al Ahmar, R., Kirby, B. D., Yu, H. D. Pyrimidine Biosynthesis Regulates Small Colony Variant and Mucoidy in Pseudomonas aeruginosa Through Sigma Factor Competition. Journal of Bacteriology. 201 (1), e00575-e00618 (2019).
  7. Ramsey, D. M., Wozniak, D. J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Molecular Microbiology. 56 (2), 309-322 (2005).
  8. Mathee, K., McPherson, C. J., Ohman, D. E. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). Journal of Bacteriology. 179 (11), 3711-3720 (1997).
  9. Schurr, M. J., Yu, H., Martinez-Salazar, J. M., Boucher, J. C., Deretic, V. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. Journal of Bacteriology. 178 (16), 4997-5004 (1996).
  10. Rehm, B. H. A., Rehm, B. H. A. Alginate Production: Precursor Biosynthesis, Polymerization and Secretion. Alginates: Biology and Applications. , 55-71 (2009).
  11. Remminghorst, U., Rehm, B. H. Bacterial alginates: from biosynthesis to applications. Biotechnology Letters. 28 (21), 1701-1712 (2006).
  12. Potvin, E., Sanschagrin, F., Levesque, R. C. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiology Reviews. 32 (1), 38-55 (2008).
  13. Damron, F. H., Goldberg, J. B. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Molecular Microbiology. 84 (4), 595-607 (2012).
  14. Bowness, J. M. Application of the carbazole reaction to the estimation of glucuronic acid and flucose in some acidic polysaccharides and in urine. The Biochemical Journal. 67 (2), 295-300 (1957).
  15. Fazio, S. A., Uhlinger, D. J., Parker, J. H., White, D. C. Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Applied Environmental Microbiology. 43 (5), 1151-1159 (1982).
  16. Knutson, C. A., Jeanes, A. A new modification of the carbazole analysis: application to heteropolysaccharides. Analytical Biochemistry. 24 (3), 470-481 (1968).

Play Video

Cite This Article
Al Ahmar, R., Kirby, B. D., Yu, H. D. Culture of Small Colony Variant of Pseudomonas aeruginosa and Quantitation of its Alginate. J. Vis. Exp. (156), e60466, doi:10.3791/60466 (2020).

View Video