Summary

确定膜蛋白拓扑使用荧光蛋白酶保护(FPP)

Published: April 20, 2015
doi:

Summary

Here, we present a protocol to determine the orientation and topology of integral membrane proteins in living cells. This simple protocol relies on selective protease sensitivity of chimeras between the protein of interest and GFP.

Abstract

The correct topology and orientation of integral membrane proteins are essential for their proper function, yet such information has not been established for many membrane proteins. A simple technique called fluorescence protease protection (FPP) is presented, which permits the determination of membrane protein topology in living cells. This technique has numerous advantages over other methods for determining protein topology, in that it does not require the availability of multiple antibodies against various domains of the membrane protein, does not require large amounts of protein, and can be performed on living cells. The FPP method employs the spatially confined actions of proteases on the degradation of green fluorescent protein (GFP) tagged membrane proteins to determine their membrane topology and orientation. This simple approach is applicable to a wide variety of cell types, and can be used to determine membrane protein orientation in various subcellular organelles such as the mitochondria, Golgi, endoplasmic reticulum and components of the endosomal/recycling system. Membrane proteins, tagged on either the N-termini or C-termini with a GFP fusion, are expressed in a cell of interest, which is subject to selective permeabilization using the detergent digitonin. Digitonin has the ability to permeabilize the plasma membrane, while leaving intracellular organelles intact. GFP moieties exposed to the cytosol can be selectively degraded through the application of protease, whereas GFP moieties present in the lumen of organelles are protected from the protease and remain intact. The FPP assay is straightforward, and results can be obtained rapidly.

Introduction

质膜,以及众多的细胞内膜,作为分离两个隔室的含水的障碍。在质膜的情况下,该分离是外部之间和小区内;对于细胞内细胞器是细胞质和细胞器内腔之间。例如,内质网(ER)膜分离的ER从胞质还原环境1管腔内氧化环境。膜蛋白合成的雌激素受体 ​​相关的核糖体,并实现其内质网膜2内做出最终的拓扑结构。收购合适的膜方向和拓扑的蛋白质是其正常功能的关键。正确拓扑允许膜蛋白有关的结构域与其结合配偶相互作用,它允许发生临界翻译后修饰,并在质膜蛋白质的情况下,允许细胞进行交互和响应吨o它的环境。充分理解的膜蛋白的功能,它显然是必须知道这样的蛋白质被定向相对于在其中驻留的膜, 也就是说 ,它的膜拓扑结构。除了 ​​获得的基础科学知识,理解的膜蛋白和其中蛋白质表面的各方面暴露于不同环境的拓扑已标记的临床意义,因为膜蛋白包含多数药理靶3。直到最近,接近已确定需要时间和金钱的大量投资或已经所需的试剂,是很难得的膜蛋白的拓扑结构。

,在硅片的实验和方法已被用于确定驻留在质膜内蛋白的膜拓扑结构。因为基于INDIVI的评价疏水性跨膜结构域的第一个预测双氨基酸3,众多的预测算法,现已在互联网上,而只要求蛋白质的氨基酸序列的知识。然而,假设常常是中央到这样的建模程序,假设,可导致拓扑4,5的不正确的分配。此外,虽然这些基于计算机的预测可以试探性地指派跨膜区域,它们不总是确定的氨基或蛋白质的羧基末端是否在细胞质中,细胞器腔或细胞外。即使具有增加的计算能力,以及利用机器学习算法6中,这样的数据仍然是一个模型,并且必须用实验获得的数据进行验证。直接的实验测定膜拓扑结构采用了与整个蛋白质,其中已经取得了他们的免疫反应的评估之前和细胞通透性后散发称为抗原决定簇的单克隆抗体的面板已经开展。此方法要求一组抗体,其可能不提供对感兴趣的蛋白质。

另一种策略是工程表位的标记,如myc基因或血凝素(HA)到各个位置的蛋白质,再其次是确定免疫前和膜通透性后。除了 ​​免疫标记,酶促标记(包括碱性磷酸酶,β半乳糖苷酶,或β内酰胺酶)和化学修饰,如半胱氨酸扫描都被用来确定膜蛋白拓扑7,8。用于质膜蛋白的拓扑映射的附加方法依赖于一个稍微不同的方式来表位标签。在该方法的标签序列是N联糖基化的共有序列NXS / T。由于糖基化作用,只有当这样的序列是存在于所述生物合成途径中,标签在一管腔相对于存在的内腔发生一个胞质区室是很容易观察到在SDS-PAGE凝胶质量偏移。这样的方法已被应用到multispanning离子通道CFTR 9。虽然所有这些方法都在使用,但很明显,它们都需要在分子生物学相当大的投资,以产生和测序所述歧管结构。

以确定关于位于细胞内细胞器内的跨膜蛋白拓扑信息已被证明是更具挑战性。基于荧光技术的应用然而,已经取得了膜拓扑简单了很多的决心。的双分子荧光互补(附设)的技术依赖于一种荧光蛋白的两个非荧光片段之间的相互作用,恢复该蛋白10的荧光性质。虽然用于确定在体内 10的蛋白质-蛋白质相互作用的最初描述,这种方法也被用于以确定膜蛋白拓扑在植物细胞11。然而,该方法也耗费时间,因为它需要的产生不仅融合蛋白与感兴趣的蛋白质,但也有多种靶向胞质溶胶或细胞器管腔融合蛋白的,并且需要知道哪些细胞内膜蛋白的兴趣在于。

另一种更简单的方法来判断膜蛋白的拓扑结构已被描述12。在测定中,荧光蛋白酶保护(FPP)要求GFP和目的基因之间的融合蛋白的产生。该方法是基于非特异性蛋白酶的GFP部分的相对无障碍;根据是否GFP是由驻留在细胞内的细胞器的管腔免受蛋白水解或通过存在于胞质溶胶暴露于蛋白水解。因此,如果在感兴趣的蛋白质的GFP部分朝向细胞质中,它会被暴露于蛋白酶活性和荧光信号丢失。相反,如果在感兴趣的蛋白质的GFP部分面临来自蛋白酶的环境“保护的”(如高尔基管腔),则荧光信号将持续存在。

以允许蛋白酶进入细胞,但不进入细胞内的膜隔室的胆固醇结合药毛地黄皂苷被使用。胆固醇是在脊椎动物中主要的甾醇,并在质膜相对于细胞内区室是特别丰富。糖苷毒素,毛地黄皂苷,是从植物洋地黄萃取毛地黄皂苷具有丰富胆固醇的膜具有亲和性,在那里它会导致选择性隔膜permeabiliztion 14,16( 图1)。除了允许小胞质成分出口,毛地黄皂苷透化还允许外源性分子,例如蛋白酶K或胰蛋白酶的条目。在FPP协议取FAC优势吨的质膜含有高达80%的细胞内胆固醇17的,而其它的细胞器,如ER,高尔基体,内体,线粒体,它们具有非常低的胆固醇含量,保持完整14。胆甾醇的选择性掺入质膜在许多真核细胞中被观察到,允许使用毛地黄皂苷依赖性质膜透化等不同的真核物种如S.酵母对人体14,18。对FPP分析提供了确定(a)一种蛋白质是否是膜结合的/关联的或在胞质溶胶和(b),该膜蛋白的结构域自由扩散朝向胞质溶胶或细胞器内腔的一个简单,快速,相当坚固的装置。应的膜蛋白有多个方向,信号将产生于主要形式和次要形式将不会被检测到。而可以有一些担心,另外一个GFP的部分与上感兴趣的蛋白的可能影响其功能和/或亚细胞定位,这实际上比实际更多的理论。实际上,许多研究已经清楚地表明,将GFP标记不改变蛋白质19,20的属性。

Protocol

1.代荧光蛋白嵌合体和验证附加绿色荧光蛋白(GFP)与感兴趣使用标准的重组DNA策略13中的蛋白质的氨基或羧基末端。 注意:虽然我们已经使用GFP的广泛应用,其他变型如青色荧光蛋白(CFP),黄色荧光蛋白(YFP),红色荧光蛋白和mCherry可以使用。正在不断取得荧光折叠效率,亮度和光稳定性的改进,和调查应利用最新一代的结构本身。 确认正确的DNA序列,并确保将GFP…

Representative Results

等离子膜通透性 高效质膜透化是通过使用可溶的荧光蛋白质( 例如 ,绿色荧光蛋白,红色荧光蛋白)(步骤4)的测定。这些蛋白质,当在细胞中表达,可自由在细胞质中扩散,并且当质膜用毛地黄皂苷( 图2)被透化都将丢失。荧光信号的完全消失,应该发生在10〜60秒毛地黄皂苷应用。所感兴趣的蛋白与细胞内细胞器相关联的确认是通过注意荧?…

Discussion

膜蛋白的正确方向和拓扑是为他们的正常功能是必不可少的。尽管认识膜蛋白拓扑的重要性,有许多蛋白质​​的量这样的数据被完全缺乏。 FPP的提供确定膜蛋白拓扑的一个简单而有效的方式,并且是可以由大多数实验室中进行。在FPP方法比以前的方法测定蛋白质拓扑能提供显著优势。例如,没有必要有定向感兴趣31的蛋白质的再次各种域上的多个抗体的面板。在许多情况下,抗体的这?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We wish to thank the Calcium Imaging Core Facility at CMS for their help and guidance in image capture and analysis. This study was supported by the U.S. National Institutes of Health (NIH) HL102208 to N.A.B. This approach was originally pioneered by Holger Lorenz and Jennifer Lippincott-Schwartz at NIH.

Materials

Name Company Catalgue Number Comments
Digitonin Calbiochem 300410
Proteinase K Sigma P2308
Trypsin Sigma T3924
Cav1-GFP Addgene 44433
pAcGFP-1 Golgi Clontech 632464
Polylysine Sigma P4707
Mounting Media Dako cS704

References

  1. Sevier, C. S., Kaiser, C. A. Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol. 3, 836-847 (2002).
  2. Brodsky, J. L., Skach, W. R. Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Current Opinion In Cell Biology. 23, 464-475 (2011).
  3. Kyte, J., Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 157, 105-132 (1982).
  4. Ott, C. M., Lingappa, V. R. Integral membrane protein biosynthesis: why topology is hard to predict. J Cell Sci. 115, 2003-2009 (2002).
  5. Traxler, B., Boyd, D., Beckwith, J. The topological analysis of integral cytoplasmic membrane proteins. The Journal of Membrane Biology. 132, 1-11 (1993).
  6. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., Elofsson, A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673-676 (1997).
  7. Geest, M., Lolkema, J. S. Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev. 64, 13-33 (2000).
  8. Bogdanov, M., Zhang, W., Xie, J., Dowhan, W. Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods. 36, 148-171 (2005).
  9. Chang, X. B., Hou, Y. X., Jensen, T. J., Riordan, J. R. Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J Biol Chem. 269, 18572-18575 (1994).
  10. Hu, C. D., Chinenov, Y., Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 9, 789-798 (2002).
  11. Zamyatnin, A. A., et al. Assessment of the integral membrane protein topology in living cells. Plant J. 46, 145-154 (2006).
  12. Lorenz, H., Hailey, D. W., Lippincott-Schwartz, J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods. 3, 205-210 (2006).
  13. Sambrook, J., Fritsch, E. F., Maniatis, T. . Molecular Cloning. a Laboratory Manual. , (1989).
  14. Shah, K., McCormack, C. E., Bradbury, N. A. Do you know the sex of your cells? American journal of physiology. Cell Physiology. 306, C3-C18 (2014).
  15. Wang, H., Brautigan, D. L. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol Chem. 277, 49605-49612 (2002).
  16. Nixon, A., Jia, Y., White, C., Bradbury, N. A. Fluorescence protease protection reveals the topology of the integral membrane protein Lemur Tyrosine Kinase 2 (LMTK2). Am J Physiol. 304 (2), C164-C169 (2012).
  17. Tagawa, A., et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol. 170, 769-779 (2005).
  18. Rizzuto, R., et al. A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and non-muscle tissues. J Biol Chem. 264, 10595-10600 (1989).
  19. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., Pozzan, T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 5, 635-642 (1995).
  20. Lorenz, H., Windl, O., Kretzschmar, H. A. Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases. J Biol Chem. 277, 8508-8516 (2002).
  21. Ben-Gedalya, T., et al. Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments. J Cell Sci. 124, 1891-1902 (2011).
  22. Rogers, M., et al. Epitope mapping of the Syrian hamster prion protein utilizing chimeric and mutant genes in a vaccinia virus expression system. J Immunol. 147, 3568-3574 (1991).
  23. Lisenbee, C. S., Karnik, S. K., Trelease, R. N. Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic. 4, 491-501 (2003).
  24. Brandee, A. P., et al. Mislocalization and degradation of human P23H-Rhodopsin-GFP in knockin mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 52, 9728-9736 (2011).
  25. Kuznetsov, A. V., et al. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 3, 965-976 (2008).

Play Video

Cite This Article
White, C., Nixon, A., Bradbury, N. A. Determining Membrane Protein Topology Using Fluorescence Protease Protection (FPP). J. Vis. Exp. (98), e52509, doi:10.3791/52509 (2015).

View Video