Summary

钙火花的评估在正常肌肉纤维

Published: February 24, 2014
doi:

Summary

这里描述的是一种方法来直接测量钙火花的Ca 2 +的基本单元从正常肌肉纤维肌质网释放。该方法利用渗透压应激介导的触发的Ca 2 +释放在孤立的肌纤维兰尼碱受体。动力学和细胞内Ca 2 +信号的稳态容量可以被用来评估在健康和疾病中的肌肉功能。

Abstract

维持内环境稳定的Ca 2 +信号传导是一个基本的生理过程中的活细胞。 钙火花的基本单元+中显示为高度本地化由兰尼碱受体介导的钙释放事件(碱受体)的Ca 2 +对肌浆网(SR)膜释放渠道横纹肌纤维的信号。正确评估肌肉的钙火花可以提供有关的健康和疾病横纹肌细胞内Ca 2 +的处理性能信息。尽管Ca 2 +的火花事件是常见于静息心肌细胞,它们很少在静息骨骼肌纤维观察到,因此有必要对方法来生成和分析在骨骼肌纤维产生火花。

这里详细是一个实验性协议,用于测量Ca 2 +的火花在孤立的屈肌digitorm短(FDB)肌纤维取fluorescent Ca 2 +的指示器和激光扫描共聚焦显微镜。在这种方法中,隔离的FDB纤维暴露到瞬时低渗应力之后返回到等渗生理溶液。在这些条件下,一个强大的Ca 2 +火花响应被检测到相邻的年轻健康的FDB肌纤维的细胞膜膜。改变Ca 2 +的响应火花在营养不良或老年骨骼肌纤维检测。这种方法最近已证实,膜分隔的信令涉及受体(IP 3 R)肌醇之间的串扰(1,4,5) -三磷酸和碱受体贡献的Ca 2 +火花激活骨骼肌。总之,使用渗透胁迫我们的研究引起Ca 2 +的火花表明,该细胞内的反应反映了肌肉的信令机制,在生理和衰老/疾病状态,包括肌肉萎缩症的小鼠模型(mdx小鼠)或肌萎缩侧索硬化症(ALS模型)。

Introduction

细胞内游离Ca 2 +(内[Ca 2 +] i的)是监管的兴奋细胞,如神经元,心肌,骨骼肌和平滑肌多种细胞功能(综述见Stutzmann和马特森1)灵活的和重要的第二信使。调控的Ca 2 +动员和串扰肌浆网(SR)和T型肾小管间(TT)膜是肌肉生理学的基本监管。此外,改变的Ca 2 +信号已被证明是收缩功能障碍的各种肌肉疾病的潜在机制。

钙火花的本地化基本的Ca 2 +释放事件从肌浆网(SR)膜(2)开放的兰尼碱受体(Ryanodine受体)通道的起源。在心肌,火花发生自发地通过由一个的Ca 2 +诱导的Ca 2 +勒开口的RyR2的信道的ASE(CICR)机制3-5。在骨骼肌,RYR1是严格的TT膜6,7电压传感器控制。因此,Ca 2 +的火花被抑制,很少发现在正常肌肉纤维的静息状态。直到最近,需要细胞膜的膜通过各种化学或机械的“换肤”方法被打乱,以脱开的RYR1电压传感器的抑制和允许的Ca 2 +引发骨骼肌8,9被检测到的事件。一个方法之前描述的肌纤维由皂素洗涤剂10膜的透化需要。

2003年,我们发现,无论是短暂的低渗应激或高渗应激可引起外周血Ca 2 +的火花毗邻的完整肌肉纤维11细胞膜的膜。这种方法已经被修改,以研究的Ca 2 +的分子机制和调制</suP>释放和动态12-16。在这里,我们勾勒出我们的实验方法对Ca 2 +的火花正常肌肉感应,检测和分析的细节。我们还提出了可以用来量化个体的Ca 2 +火花在骨骼肌, 火花的频率和幅度(ΔF/F0,它反映的RyR通道的开放概率的元素的属性我们的定制火花分析程序和的Ca 2 +的负荷对SR内);达峰时间(上升时间)和持续时间(FDHM,充分停留时间的火花在半最大振幅),以及Ca 2 +的火花的空间分布。此外,我们目前的证据表明链接改变的Ca 2 +火花的各种病理生理状态的骨骼肌,如肌肉萎缩症和肌萎缩性侧索硬化症。

这种技术的优点涉及到测量的Ca 2 +的相对undam的能力老化细胞,而不是剥离的肌肉纤维,使记录的Ca 2 +火花在条件更接近生理,。此外,我们的定制设计方案提供与肌纤维火花的特性更精确的计算。

Protocol

1。设置渗透胁迫灌注系统 图1是钙的示意性协议火花评估在正常肌肉纤维。 设置了一个三轴(XYZ)显微操作器能够定位含有至少两个通道的灌注系统的出口端部。此可以作出与一次性鲁尔注射器筒与附3 -路鲁尔 – 乐旋塞打开和/或关闭灌注液的流动。这些灌注通道应能够输送的溶液> 1毫升/分钟通过一个单一的灌注尖与>直径0.2mm的。 <l…

Representative Results

早期的研究表明,瞬态低渗胁迫引起的周围的Ca 2 +火花相邻的完整的肌肉纤维的肌膜膜11。 图1示出的完整单肌纤维具有光滑肌膜膜和特征明确的条纹图像, 图2示出了典型的Ca 2 +火花(如XY图像)由瞬态(100秒)与低渗的解决方案,从膨胀年轻,健康小鼠的FDB肌肉纤维治疗引起的。由于肌纤维收缩回原来的体积,强大的Ca 2 +的火花?…

Discussion

评估在正常肌肉的Ca 2 +的火花此方法对于肌肉的生理和疾病研究的有用工具。我们发现,在Ca 2 +的火花响应被改变在不同条件,包括肌营养不良症11,老化18,19,以及在肌萎缩性侧索硬化症20。我们最近的研究还发现IP 3受体和RyR的代表,有助于钙在骨骼肌肉纤维21 2火花激活的关键组成部分之间的功能耦合。其他几个研究小组也采?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由RO1-AG028614到JM,RO1-AR063084to NLW和RO1-AR057404到JZ支持。

Materials

Dissecting microscope Dissect out fibers and check muscle integrity
Dissection tools -scissors, and fine tip forceps Fine Science Tools
Sylgard 184 Silicone Elastomer Kit DOW CORNING 184 SIL ELAST KIT  Make ahead of time for fiber dissection. Mix 5 ml liquid Sylgard components and pour into a 60-mm glass Petri dish and waiting 48 hr to let the Sylgard compound become clear, colorless solid substrate. 
60-mm glass petri dish  Pyrex 3160 Fiber dissection
Isotonic Tyrode Solution  Sigma-Aldrich
Minimal Ca2+ Tyrode Solution Sigma-Aldrich
Hypotonic Tyrode Solution  Sigma-Aldrich
collagenase type I  Sigma-Aldrich C-5138 Fiber digestion 
Fluo-4 AM  Invitrogen F14201 Fluorescent Ca2+ imaging dyes 
TMRE Invitrogen T669 mitochondrial membrane potential fluorescent dyes
Delta TPG dishes  Bioptechs 0420041500C 35 mm glass bottom dish for imaging
Spark Fit software data analysis software
Radiance 2100 laser scanning confocal microscope or equivalent microscope Bio-Rad
3 axis micromanipulator Narishige International MHW-3
temperature controllable orbital shaker New Brunswick scientific Fiber dissociation

References

  1. Stutzmann, G. E., Mattson, M. P. Endoplasmic reticulum Ca2+ handling in excitable cells in health and disease. Pharmacol. Rev. 63 (3), 700-727 (2011).
  2. Cheng, H., Lederer, W. J. Calcium sparks. Physiol. Rev. 88 (4), 1491-1545 (2008).
  3. Brochet, D. X., et al. Elementary calcium release events from the sarcoplasmic reticulum in the heart. Adv. Exp. Med. Biol. 740, 499-509 (2012).
  4. Brochet, D. X., et al. Quarky calcium release in the heart. Circ. Res. 108 (2), 210-218 (2011).
  5. Guatimosim, S., Guatimosim, C., Song, L. S. Imaging calcium sparks in cardiac myocytes. Methods Mol. Biol. 689, 205-214 (2011).
  6. Dulhunty, A. F. Excitation-contraction coupling from the 1950s into the new millennium. Clin. Exp. Pharmacol. Physiol. 33 (9), 763-772 (2006).
  7. Dulhunty, A. F., Casarotto, M. G., Beard, N. A. The ryanodine receptor: a pivotal Ca2+ regulatory protein and potential therapeutic drug target. Curr. Drug Targets. 12 (5), 709-723 (2011).
  8. Kirsch, W. G., Uttenweiler, D., Fink, R. H. Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J. Physiol. 537, 379-389 (2001).
  9. Zhou, J., et al. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am. J. Physiol. Cell. Physiol. 290 (2), 539-553 (2006).
  10. Zhou, J., et al. Ca2+ sparks and embers of mammalian muscle. Properties of the sources. J. Gen. Physiol. 122 (1), 95-114 (2003).
  11. Wang, X., et al. Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat. Cell. Biol. 7 (5), 525-530 (2005).
  12. Teichmann, M. D., et al. Inhibitory control over Ca2+ sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression. PLoS One. 3 (11), e3644 (2008).
  13. Shkryl, V. M., et al. Reciprocal amplification of ROS and Ca2+ signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers. Arch. 458 (5), 915-928 (2009).
  14. Lovering, R. M., Michaelson, L., Ward, C. W., et al. Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling. Am. J. Physiol. Cell. Physiol. 297 (3), 571-580 (2009).
  15. Weisleder, N., Ma, J. J. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy. Acta. 27 (7), 791-798 (2006).
  16. Weisleder, N., Zhou, J., Ma, J. Detection of calcium sparks in intact and permeabilized skeletal muscle fibers. Methods Mol. Biol. 798, 395-410 (2012).
  17. Picht, E., et al. SparkMaster: automated calcium spark analysis with ImageJ. Am. J. Physiol. Cell. Physiol. 293 (3), 1073-1081 (2007).
  18. Weisleder, N., et al. Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J. Cell. Biol. 174 (5), 639-645 (2006).
  19. Weisleder, N., Ma, J. Altered Ca2+ sparks in aging skeletal and cardiac muscle. Ageing Res. Rev. 7 (3), 177-188 (2008).
  20. Yi, J., et al. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J. Biol. Chem. 286 (37), 32436-32443 (2011).
  21. Tjondrokoesoemo, A., et al. Type 1 inositol (1,4,5)-trisphosphate receptor activates ryanodine receptor 1 to mediate calcium spark signaling in adult Mammalian skeletal muscle. J. Biol. Chem. 288, 2103-2109 (2013).
  22. Martins, A. S., et al. Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres. J. Physiol. 586 (1), 197-210 (2008).
  23. Apostol, S., et al. Local calcium signals induced by hyper-osmotic stress in mammalian skeletal muscle cells. J. Muscle Res. Cell Motil. 30 (3-4), 97-109 (2009).
  24. Jiang, Y. L., et al. Nicotinic acid adenine dinucleotide phosphate (NAADP) Activates Global and Heterogeneous Local Ca2+ Signals from NAADP- and Ryanodine Receptor-gated Ca2+ Stores in Pulmonary Arterial myocytes. J. Biol. Chem. 288 (15), 10381-10394 (2013).

Play Video

Cite This Article
Park, K. H., Weisleder, N., Zhou, J., Gumpper, K., Zhou, X., Duann, P., Ma, J., Lin, P. Assessment of Calcium Sparks in Intact Skeletal Muscle Fibers. J. Vis. Exp. (84), e50898, doi:10.3791/50898 (2014).

View Video