Summary

使用 EV 激活凝血时间 (EV-ACT) 测定细胞外囊泡 (EV) 的促凝血活性

Published: August 04, 2023
doi:

Summary

该方案研究了使用富含细胞囊泡(EV)的血浆作为EV凝血能力的指标。通过差速离心和随后的再钙化过程获得富含EV的血浆。

Abstract

细胞外囊泡 (EV) 在各种疾病中的作用越来越受到关注,特别是由于其强大的促凝血活性。然而,迫切需要床边测试来评估 EV 在临床环境中的促凝血活性。本研究建议使用富含 EV 的血浆的凝血酶激活时间作为 EV 促凝血活性的量度。采用标准化程序获得枸橼酸钠全血,然后进行差速离心以获得富含 EV 的血浆。将富含EV的血浆和氯化钙加入测试杯中,并使用分析仪实时监测粘弹性的变化。测定富含 EV 的血浆(称为 EV-ACT)的自然凝固时间。结果显示,当从健康志愿者获得的血浆中去除EV时,EV-ACT显着增加,而当EV富集时,EV-ACT显着降低。此外,子痫前期、髋部骨折和肺癌的人类样本中的 EV-ACT 显着缩短,表明血浆 EV 水平升高并促进血液高凝。凭借其简单快速的程序,EV-ACT有望作为评估高血浆EV水平患者凝血功能的床边测试。

Introduction

血栓形成是由高凝状态引起的,在脑外伤1、先兆子痫2、肿瘤3和骨折患者4等多种疾病中起着重要作用。高凝状态的潜在机制很复杂,最近重点放在细胞外囊泡 (EV) 在凝血障碍中的作用。EV 是具有双层结构的囊泡状体,与细胞膜分离,直径范围为 10 nm 至 1000 nm。它们与多种疾病过程有关,尤其是凝血障碍5。几项研究已将 EV 确定为血栓形成风险的有希望的预测因子 6,7。EV的促凝血活性取决于凝血因子的表达,主要是组织因子(TF)和磷脂酰丝氨酸(PS)。具有强大促凝血活性的EV显著增强了腱蛋白酶和凝血酶原复合物的催化效率,从而促进凝血酶介导的纤维蛋白原和局部血栓形成8。在许多疾病中已观察到 EV 水平升高及其与高凝状态的因果关系9。因此,标准化 EV 的检测并报告其促凝血活性是研究的一个重要领域10

迄今为止,只有少数商业试剂盒可用于检测电动汽车的促凝血活性。MP-Activity 测定和 MP-TF 测定由一家商业公司生产,是用于测量 EV 在血浆中促凝血活性的功能测定11。这些检测采用与酶联免疫吸附检测相似的原理来检测 EV 上的 PS 和 TF。然而,这些试剂盒价格昂贵,并且仅限于少数高级研究机构。该过程复杂且耗时,因此在临床环境中实施它们具有挑战性。此外,商业开发的促凝血磷脂 (PPL) 检测将无 PS 血浆与测试血浆混合,测量凝血时间以定量检测 PS 阳性 EV的水平 12。然而,这些测定主要集中在 EV 上的 PS 和 TF,忽略了循环 EV 可能参与的其他凝血途径12.

血浆凝血系统错综复杂,包括“看不见”和“看得见”的成分,包括凝血剂、抗凝剂、纤溶系统和悬浮在血浆中的 EV。在生理上,这些成分保持动态平衡。在病理条件下,循环中 EV 的显着增加会导致高凝状态,尤其是在脑外伤、先兆子痫、骨折和各种癌症患者中 13。目前,临床实验室对凝血状态的评估主要涉及对凝血系统、抗凝系统和纤蛋白溶解的评估14,15,16,17。凝血酶原时间、活化部分凝血活酶时间、凝血酶时间和国际标准化比值通常用于评估凝血系统中的凝血因子水平18。然而,最近的研究表明,这些测试并不能完全反映某些疾病的高凝状态19。其他测定方法,如血栓弹力测定法 (TEG)、旋转 TEG 和声凝块分析,可测量全血粘弹性变化20,21。由于全血样本含有大量血细胞和血小板,因此这些测试更有可能表明整个样本的凝血状态。一些研究人员报道了血细胞和血小板在促凝血活性中的作用22,23。最近的一项研究还发现,以前的凝血功能测试在检测微粒促凝血活性的变化方面面临困难24。因此,提出了一个假设,即可以通过对富含 EV 的血浆中活化凝血时间 (ACT) 的粘弹性测量来评估 EV 的促凝血功能。

Protocol

人体样本采集经天津医科大学总医院医学伦理委员会批准。人静脉血采集严格按照中国国家卫生健康委员会发布的指南,即WS/T 661-2020《静脉血标本采集指南》。简而言之,从肱前静脉知情同意的健康个体中采集血液,并使用 3.2% 柠檬酸钠抗凝剂以 1:9 的比例混合样本。当仅收集柠檬酸钠抗凝剂标本时,丢弃第一个收集容器。在样品采集后 0.5 小时内启动处理流程。在获得知情同意后招募成年健康…

Representative Results

使用粘弹性法分析仪测量富含EV的血浆的凝血酶活化时间,用于血浆凝血时间测量。该机器由四个主要部件组成:电子信号转换器、探头、检测罐和加热元件(图 1A、B)。该探头利用高频和低振幅振荡来检测等离子体粘度的变化。日常质量控制主要涉及空气质量控制,以评估测试平台的稳定性并识别对探头的任何物理干扰。性能质量控制包括使用标准粘度油进?…

Discussion

本研究阐述了富EV血浆的制备方法,并采用流式细胞术验证了该方法的合理性。随后,使用基于粘弹性原理 24 的凝块分析仪对再钙化的血浆样品进行 ACT 时间分析。如图3A所示,发现通过超速离心获得的EV浓度缩短了EV-ACT时间,而超速离心后的上清液降低了EV-ACT时间,表现出更长的EV-ACT时间。这些发现表明 EV-ACT 结果与 EV 水平之间存在密切关系。在<strong class…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金的资助,81901525年81930031号资助。此外,我们感谢天津世纪亿康医疗科技发展有限公司为我们提供的机器和技术指导。

Materials

AccuCount Ultra Rainbow Fluorescent Particles 3.8 microm; Spherotech, Lake Forest, IL, USA For quantitative detection of MP
Calcium chloride Werfen (china) 0020006800 20 mM
Century Clot analyzer Tianjin Century Yikang Medical Technology Development Co., Ltd The principle is to measure plasma viscosity by viscoelastic method
Disposable probe and test cup Tianjin Century Yikang Medical Technology Development Co., Ltd
LSR Fortessa flow cytometer BD, USA Used to detect MP
Megamix polystyrene beads Biocytex, Marseille, France 7801 The Megamix consists of a mixture of microbeads of selected diameters: 0.5 µm, 0.9 µm and 3 µm.

References

  1. Zhang, J., Zhang, F., Dong, J. F. Coagulopathy induced by traumatic brain injury: systemic manifestation of a localized injury. Blood. 131 (18), 2001-2006 (2018).
  2. Han, C., Chen, Y. Y., Dong, J. F. Prothrombotic state associated with preeclampsia. Current Opinion in Hematology. 28 (5), 323-330 (2021).
  3. Campello, E., Bosch, F., Simion, C., Spiezia, L., Simioni, P. Mechanisms of thrombosis in pancreatic ductal adenocarcinoma. Best Practice & Research Clinical Haematology. 35 (1), 101346 (2022).
  4. You, D., et al. Identification of hypercoagulability with thrombelastography in patients with hip fracture receiving thromboprophylaxis. Canadian Journal of Surgery. 64 (3), E324-E329 (2021).
  5. Shah, R., Patel, T., Freedman, J. E. Circulating extracellular vesicles in human disease. The New England Journal of Medicine. 379 (10), 958-966 (2018).
  6. Zang, X., et al. Hepatocyte-derived microparticles as novel biomarkers for the diagnosis of deep venous thrombosis in trauma patients. Clinical and Applied Thrombosis/Hemostasis. 29, 10760296231153400 (2023).
  7. Chen, Y., et al. Annexin V(-) and tissue factor(+) microparticles as biomarkers for predicting deep vein thrombosis in patients after joint arthroplasty. Clinica Chimica Acta. 536, 169-179 (2022).
  8. Wang, C., Yu, C., Novakovic, V. A., Xie, R., Shi, J. Circulating microparticles in the pathogenesis and early anticoagulation of thrombosis in COVID-19 with kidney injury. Frontiers in Cell and Developmental Biology. 9, 784505 (2021).
  9. Lacroix, R., Dubois, C., Leroyer, A. S., Sabatier, F., Dignat-George, F. Revisited role of microparticles in arterial and venous thrombosis. Journal of Thrombosis and Haemostasis. 11 (Suppl 1), 24-35 (2013).
  10. Cointe, S., et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. Journal of Thrombosis and Haemostasis. 15 (1), 187-193 (2017).
  11. Ayers, L., Harrison, P., Kohler, M., Ferry, B. Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity. Journal of Extracellular Vesicles. 3, 25348 (2014).
  12. Mooberry, M. J., et al. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia. Journal of Thrombosis and Haemostasis. 14 (5), 1031-1042 (2016).
  13. Zhao, Z., et al. Cellular microparticles and pathophysiology of traumatic brain injury. Protein & Cell. 8 (11), 801-810 (2017).
  14. Bolliger, D., Tanaka, K. A. Point-of-care coagulation testing in cardiac surgery. Seminars in Thrombosis and Hemostasis. 43 (4), 386-396 (2017).
  15. Ganter, M. T., Hofer, C. K. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesthesia & Analgesia. 106 (5), 1366-1375 (2008).
  16. Samuelson, B. T., Cuker, A., Siegal, D. M., Crowther, M., Garcia, D. A. Laboratory assessment of the anticoagulant activity of direct oral anticoagulants: a systematic review. Chest. 151 (1), 127-138 (2017).
  17. Maier, C. L., Sniecinski, R. M. Anticoagulation monitoring for perioperative physicians. Anesthesiology. 135 (4), 738-748 (2021).
  18. Tuktamyshov, R., Zhdanov, R. The method of in vivo evaluation of hemostasis: Spatial thrombodynamics. Hematology. 20 (10), 584-586 (2015).
  19. Tsantes, A. G., et al. Higher coagulation activity in hip fracture patients: A case-control study using rotational thromboelastometry. International Journal of Laboratory Hematology. 43 (3), 477-484 (2021).
  20. Premkumar, M., et al. COVID-19-related dynamic coagulation disturbances and anticoagulation strategies using conventional D-dimer and point-of-care Sonoclot tests: a prospective cohort study. BMJ Open. 12 (5), e051971 (2022).
  21. Sakai, T. Comparison between thromboelastography and thromboelastometry. Minerva Anestesiologica. 85 (12), 1346-1356 (2019).
  22. Yan, M., et al. TMEM16F mediated phosphatidylserine exposure and microparticle release on erythrocyte contribute to hypercoagulable state in hyperuricemia. Blood Cells, Molecules and Diseases. 96, 102666 (2022).
  23. Yu, H., et al. Hyperuricemia enhances procoagulant activity of vascular endothelial cells through TMEM16F regulated phosphatidylserine exposure and microparticle release. The FASEB Journal. 35 (9), e21808 (2021).
  24. Gao, Y., et al. MPs-ACT, an assay to evaluate the procoagulant activity of microparticles. Clinical and Applied Thrombosis/Hemostasis. 29, 10760296231159374 (2023).
  25. Wang, J., et al. Brain-derived extracellular vesicles induce vasoconstriction and reduce cerebral blood flow in mice. Journal of Neurotrauma. 39 (11-12), 879-890 (2022).
  26. Tan, J., et al. Analysis of circulating microvesicles levels and effects of associated factors in elderly patients with obstructive sleep apnea. Frontiers in Aging Neuroscience. 13, 609282 (2021).
  27. Kubo, H. Extracellular vesicles in lung disease. Chest. 153 (1), 210-216 (2018).
  28. Gilani, S. I., Weissgerber, T. L., Garovic, V. D., Jayachandran, M. Preeclampsia and Extracellular Vesicles. Current Hypertension Reports. 18 (9), 68 (2016).
  29. Pourakbari, R., Khodadadi, M., Aghebati-Maleki, A., Aghebati-Maleki, L., Yousefi, M. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis. Life Science. 236, 116861 (2019).
  30. Shi, J., Gilbert, G. E. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 101 (7), 2628-2636 (2003).
  31. Dasgupta, S. K., Le, A., Chavakis, T., Rumbaut, R. E., Thiagarajan, P. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation. 125 (13), 1664-1672 (2012).
  32. Frey, B., Gaipl, U. S. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Seminars in Immunopathology. 33 (5), 497-516 (2011).
  33. Rikkert, L. G., Coumans, F. A. W., Hau, C. M., Terstappen, L., Nieuwland, R. Platelet removal by single-step centrifugation. Platelets. 32 (4), 440-443 (2021).
  34. Chen, Y., et al. Association of placenta-derived extracellular vesicles with pre-eclampsia and associated hypercoagulability: a clinical observational study. BJOG. 128 (6), 1037-1046 (2021).
  35. Liu, Y., et al. The potential applications of microparticles in the diagnosis, treatment, and prognosis of lung cancer. Journal of Translational Medicine. 20 (1), 404 (2022).
  36. Piwkham, D., et al. The in vitro red blood cell microvesiculation exerts procoagulant activity of blood cell storage in Southeast Asian ovalocytosis. Heliyon. 9 (1), e12714 (2023).
  37. Patil, R., Ghosh, K., Shetty, S. A simple clot based assay for detection of procoagulant cell-derived microparticles. Clinical Chemistry and Laboratory Medicine. 54 (5), 799-803 (2016).

Play Video

Cite This Article
Gao, Y., Li, K., Qin, Q., Zhang, J., Liu, L. Determination of the Procoagulant Activity of Extracellular Vesicle (EV) Using EV-Activated Clotting Time (EV-ACT). J. Vis. Exp. (198), e65661, doi:10.3791/65661 (2023).

View Video