Summary

Experimental Melanoma Immunotherapy Model Using Tumor Vaccination with a Hematopoietic Cytokine

Published: February 24, 2023
doi:

Summary

The protocol presents a cancer immunotherapy model using cell-based tumor vaccination with Flt3L-expressing B16-F10 melanoma. This protocol demonstrates the procedures, including preparation of cultured tumor cells, tumor implantation, cell irradiation, measurement of tumor growth, isolation of intratumoral immune cells, and flow cytometry analysis.

Abstract

Fms-like tyrosine kinase 3 ligand (Flt3L) is a hematopoietic cytokine that promotes the survival and differentiation of dendritic cells (DCs). It has been used in tumor vaccines to activate innate immunity and enhance antitumor responses. This protocol demonstrates a therapeutic model using cell-based tumor vaccine consisting of Flt3L-expressing B16-F10 melanoma cells along with phenotypic and functional analysis of immune cells in the tumor microenvironment (TME). Procedures for cultured tumor cell preparation, tumor implantation, cell irradiation, tumor size measurement, intratumoral immune cell isolation, and flow cytometry analysis are described. The overall goal of this protocol is to provide a preclinical solid tumor immunotherapy model, and a research platform to study the relationship between tumor cells and infiltrating immune cells. The immunotherapy protocol described here can be combined with other therapeutic modalities, such as immune checkpoint blockade (anti-CTLA-4, anti-PD-1, anti-PD-L1 antibodies) or chemotherapy in order to improve the cancer therapeutic effect of melanoma.

Introduction

Cancer immunotherapy has been recognized as a promising therapeutic strategy based on its less toxic side effects and more durable responses. Several types of immunotherapies have been developed, including oncolytic virus therapies, cancer vaccines, cytokine therapies, monoclonal antibodies, adoptive cell transfer (CAR-T cells or CAR-NK), and immune checkpoint blockade1.

For cancer vaccines, there are different forms of therapeutic vaccines, such as whole cell-based vaccines, protein or peptide vaccines, and RNA or DNA vaccines. Vaccination relies on the ability of antigen-presenting cells (APCs) to process tumor antigens, including tumor-specific antigens, and present them in an immunogenic form to T cells. Dendritic cells (DCs) have been known to be the most potent APCs and are believed to play an important role in antitumor immunity2,3. These cells take up and process tumor antigens, and then migrate to the draining lymph nodes (dLN) to prime and activate tumor-specific T effector (Teff) cells through engagement of the T-cell receptor (TCR) and costimulatory molecules. This results in differentiation and expansion of tumor-specific cytotoxic T cells (CTL), which infiltrate the tumor and kill tumor cells4. Consequently, activation and maturation of DCs represent attractive strategies to stimulate immunity against tumor antigens.

Flt3L is known to promote the maturation and expansion of functionally mature DCs that express MHC class II, CD11c, DEC205, and CD86 proteins5. Intratumoral, but not intravenous, administration of an adenovirus vector incorporating the Flt3L gene (Adv-Flt3L) has been shown to promote immune therapeutic activity against orthrotopic tumors6. Flt3L has also been used in tumor cell-based vaccines consisting of irradiated B16-F10 cells stably expressing retrovirally transduced Flt3L as a way of enhancing the cross-presentation of tumor antigens by DCs and, thus, increasing antitumor responses. The protocol of B16-Flt3L tumor vaccination described here is based on a study published by Dr. James Allison’s group7. In this paper, they reported that a B16-Flt3L vaccine combined with CTLA-4 blockade synergistically induced the rejection of established melanoma, resulting in increased survival.

The goal of this protocol is to provide a preclinical immunotherapy model for melanoma. Here, detailed procedures of how to prepare and implant tumor vaccines, and how to analyze the composition and function of intratumoral immune cells from solid tumor are described.

Protocol

All mice used in the study were maintained and housed in the vivarium of the La Jolla Institute for Immunology (LJI) under specific pathogen-free conditions with controlled temperature and humidity. Animal experiments were performed with 8-14 weeks old female C57BL/6 mice according to guidelines and protocols approved by the LJI Animal Care Committee. 1. Preparation of cultured tumor cells for implantation Culture B16-F10 melanoma cells in Iscove's Modified Dul…

Representative Results

A visible black dot of the implanted B16-F10 cells is usually observed on the skin surface ~3 days after tumor implantation. Mice are treated with the tumor vaccine 3, 6, and 9 days after the tumor nodule has reached a size of ≥2 mm. We observed a significant reduction in tumor growth in vaccinated mice group ~2 weeks after tumor implantation (Figure 1). At the end of the experiment, we isolated the intratumoral immune cells and analyzed their number and cell surface marker expression,…

Discussion

The protocol described here is based on the study by Allison's group. They demonstrated that combination of B16-Flt3L vaccine with CTLA-4 blockade showed a synergistic effect on survival rate and tumor growth, whereas no reduction of tumor growth was seen in mice receiving the B16-Flt3L vaccine or anti-CTLA-4 antibody treatment alone7. Recent studies have revealed a novel Treg-intrinsic CTLA4-PKCη signaling pathway that plays an important obligatory role in regulating the contact-dependen…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Stephen Schoenberger for providing B16-Flt3L cells and the staff of the LJI animal and flow cytometry facilities for excellent support.

Materials

0.25% trypsin-EDTA  Gibco 25200-056
10% heat-inactivated FBS Omega Scientific FB-02  Lot# 209018
30G needle BD Biosciences 305106
96 well V-shape-bottom plate SARSTEDT 83.3926.500
B16 cell line expressing Fms-like tyrosine kinase 3 ligand (B16-Flt3L) Gift of Dr. Stephen Schoenberger, LJI  Flt3L cDNAs were cloned into the pMG-Lyt2 retroviral vector, as in refernce 5, Supplemental Figure 1
B16-F10 cell lines ATCC CRL-6475
Centrifuge 5810R Eppendorf
Cytofix fixation buffer  BD Biosciences BDB554655 Cell fixation buffer (4.2% PFA) 
Cytofix/Cytoperm kit  BD Biosciences 554714 Fixation/Permeabilization Solution Kit
DNase I Sigma 11284932001
Dulbecco's Modified Eagle Medium  (DMEM)  Corning 10013CV
Electronic digital caliper Fisherbrand 14-648-17
FlowJo software  Tree Star Flow cytometer data analysis
GolgiStop (protein transport inhibitor) BD Biosciences 554724 1:1500 dilution
HEPES (1M) Gibco 15630-080
Ionomycin Sigma I0634
Iscove’s modified Dulbecco’s medium (IMDM) Thermo Fisher 12440053
LSR-II cytometers  BD Biosciences Flow cytometer
MEM nonessential amino acids Gibco 11140-050
penicillin and streptomycin  Gibco 15140-122
Percoll  GE Healthcare Life Sciences GE17-0891-02 density gradient specific medium
PMA Sigma P1585
Red Blood Cell Lysing Buffer Hybri-Max liquid Sigma R7757-100ML
RPMI 1640 medium Corning 10-040-CV
RS2000 X-ray Irradiator Rad Source Technologies
sodium pyruvate Gibco 11360-070
Sterile cell strainer 40 μm Fisherbrand 22-363-547
Sterile cell strainer 70 μm Fisherbrand 22-363-548
TL Liberase Roche 477530
Zombie Aqua fixable viability kit BioLegend 423101
Antibodies
Anti-mCD45 BioLegend 103135 Clone: 30-F11
Fluorophore: BV570
Dilution: 1:200
Anti-mCD3ε BioLegend 100327 Clone: 145-2C11
Fluorophore: PerCP-Cy5.5
Dilution: 1:200
Anti-mCD8 BioLegend 100730
100724
Clone: 53-6.7
Fluorophore: Alexa Fluor 700, Alexa Fluor 647
Dilution: 1:200
Anti-mCD4 BioLegend 100414 Clone: GK1.5
Fluorophore: APC-Cy7
Dilution: 1:200
Anti-mFoxp3 Thermo Fisher Scientific 11577382 Clone: FJK-16s
Fluorophore: FITC
Dilution: 1:100
Anti-m/hGzmB BioLegend 372208 Clone: QA16A02
Fluorophore: PE
Dilution: 1:100
Anti-mIFNg BioLegend 505826 Clone: XMG1.2
Fluorophore: PE-Cy7
Dilution: 1:100
Anti-mCD19 BioLegend 115543 Clone: 6D5
Fluorophore: BV785
Dilution: 1:100
Anti-mGr1 BioLegend 108423 Clone: RB6-8C5
Fluorophore: APC/Cy7
Dilution: 1:200
Anti-mCD11b BioLegend 101223 Clone: M1/70
Fluorophore: Pacific blue
Dilution: 1:100
Anti-mF4/80 BioLegend 123114 Clone: BM8
Fluorophore: PECy7
Dilution: 1:100
Anti-mCD11c BioLegend 117328 Clone: N418
Fluorophore: PerCP Cy5.5
Dilution: 1:100
Anti-mMHCII BioLegend 107622 Clone: M5/114.15.2
Fluorophore: AF700
Dilution: 1:400
Anti-mCD103 BioLegend 121410 Clone: 2E7
Fluorophore: Alexa Fluor 647
Dilution: 1:200
Anti-mCD86 BioLegend 105007 Clone: GL-1
Fluorophore: PE
Dilution: 1:200
FC-blocker (Rat anti-mouse CD16/CD32) BD Biosciences 553141 Clone: 2.4G2
Dilution: 1:200

References

  1. Zhang, Y., Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell & Molecular Immunology. 17 (8), 807-821 (2020).
  2. Banchereau, J., Steinman, R. M. Dendritic cells and the control of immunity. Nature. 392 (6673), 245-252 (1998).
  3. Banchereau, J., et al. Immunobiology of dendritic cells. Annual Review of Immunology. 18, 767-811 (2000).
  4. Martinez-Lostao, L., Anel, A., Pardo, J. How do cytotoxic lymphocytes kill cancer cells. Clinical Cancer Research. 21 (22), 5047-5056 (2015).
  5. Maraskovsky, E., et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. Journal of Experimental Medicine. 184 (5), 1953-1962 (1996).
  6. Talmadge, J. E., et al. Intratumoral, injection of adenoviral Flt3 ligand has therapeutic activity in association with increased intratumoral levels of T cells but not dendritic cells. Blood. 104 (11), 5280 (2004).
  7. Curran, M. A., Allison, J. P. Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. American Association for Cancer Research. 69 (19), 7747-7755 (2009).
  8. Simon, S. R., Ershler, W. B. Hormonal influences on growth of B16 murine melanoma. Journal of the National Cancer Institute. 74 (5), 1085-1088 (1985).
  9. Broz, M. L., et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 26 (6), 938 (2014).
  10. Salmon, H., et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 44 (4), 924-938 (2016).
  11. Liu, H. Y., et al. Leveraging the Treg-intrinsic CTLA4-PKCeta signaling pathway for cancer immunotherapy. Journal for Immunotherapy Cancer. 9 (9), 002792 (2021).
  12. Kong, K. F., et al. Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nature Immunology. 15 (5), 465-472 (2014).

Play Video

Cite This Article
Liu, H. Y., Altman, A., Canonigo-Balancio, A. J., Croft, M. Experimental Melanoma Immunotherapy Model Using Tumor Vaccination with a Hematopoietic Cytokine. J. Vis. Exp. (192), e64082, doi:10.3791/64082 (2023).

View Video