Summary

老化のヒトの疾患に関与する遺伝子を研究するために使用される遺伝子改変マウス用表現型レジメン

Published: July 14, 2016
doi:

Summary

A reverse-genetics approach to understanding gene families associated with human disease is presented, using mouse as a model system, and the subsequent mouse phenotyping schedule is described. Because mice defective in a gene of interest, HtrA2, manifested Parkinsonian symptoms, the phenotyping regimen is focused on identifying neurological defects.

Abstract

Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson’s disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson’s. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results from the tests of interest.

Introduction

加齢関連疾患は、現代社会でますます普及してきています。医学が向上し、平均余命が増加すると、人口は年齢に続き、これらの疾患の負担が大きくなります。有効な治療法は衰弱させる条件の影響を軽減するために必要であるが、多くの場合、とらえどころのないまま。唯一の加齢に伴う疾患の原因と病態を理解することによって、科学者たちは、潜在的な治療標的を同定し、介入のための戦略を開発するために始めることができます。一般的な加齢関連状態は、パーキンソン病(PD)及び加齢性黄斑変性症(AMD)などの神経変性疾患が挙げられます。 PDは、ヒトにおいて神経変性によって引き起こされる最も一般的な運動障害です。ほとんどのPD患者は、年齢の50年後振戦、動作緩慢、剛性を休んなどの症状を示しています。早期発症はまた、症例の約10%において観察されています。

AMDは失明の主要な原因であります目の中の高齢者、漸進的にダメージを与える光受容体および網膜色素上皮(RPE)。中心視力が損なわが、周辺視野は、一般的に影響を受けません。 AMDの2つの形式があります。 「ドライ」の形式では、RPEとブルッフ膜(BM)との間のドルーゼンの形として知られている細胞外タンパク質の沈着は、地理的萎縮につながると中心視力のぼやけ。より深刻な「ウェット」フォームRPEと感光層へのBM全体の脈絡膜から新生血管形成の結果とは、網膜組織に永久的な損傷を引き起こす網膜の下にhamorrhagingにつながることができます。染色体1および10q26座、加齢性黄斑変性症の感受性2(ARMS2)との補体因子H(CFH):ゲノムワイド関連研究では、以前にこの疾患に感受性の増加に関連付けられており、関心の2つの領域を同定された遺伝子座を同定しました高温要件因子A1(HTRA1)遺伝子が1-5位置しています</sup>。これらの対立遺伝子の組み合わせは、用量依存的にAMDの可能性を増加させ、特定のSNPを優先AMD 3-6の湿潤または乾燥形態のいずれかに関連付けることができます。

CFHはC3の活性化を阻害することによって補体系の代替経路(AP)の負の調節因子として作用します。一塩基多型(SNP)が原因でC置換1〜Tにヒスチジンとエクソン9におけるチロシン402の交換を引き起こし、AMDのリスクの増加に関連しています。 AMDでは、APが原因CFHの機能の喪失が、SNPは因果的役割は不明である果たしているかどうかを誤調節されると考えられています。 1つの仮説は、正に荷電したヒスチジンは、タンパク質C反応性タンパク質、およびヘパリン硫酸1,7相互作用に結合するCFHの能力を無効にすると考えられることである。CFH Y402Hのインビトロ研究は、変異体間の機能の違い上矛盾する結果を提供し、 中in vivo作業<EM> CFH – / ヒトCFHを発現するマウスは、8進行中です。遺伝子は、マウスには存在しないもののARMS2は、霊長類ゲノムにおけるHTRA1の上流に位置します。 HTRA1は、セリンプロテアーゼであるが、ARMS2が不十分に特徴付けられます。 AMD関連遺伝子座におけるSNPの間の連鎖不均衡は、それが困難なこの地域の遺伝子の個々の突然変異のリスクへの寄与を決定するために作られましたが、最近の研究は、それが血管新生につながるというARMS2よりHTRA1の過剰発現があることが示唆されていると網膜下のタンパク質沈着9-11。しかし、この遺伝子座における遺伝子の近接は、ランダムに挿入された導入遺伝子を用いて研究することができないの相互作用を可能にすることができます。

AMDに加えて、セリンプロテアーゼのhtrAのファミリーは、多くのヒトの疾患に関連しています。すべてhtrAのタンパク質は、少なくとも1つのC末端PDZドメインに続くセリンプロテアーゼドメインを含みます。 HTRA1、HtrA3とHtrA4はグラムを共有しますシグナルペプチド、インスリン様成長因子結合ドメイン、カザールプロテアーゼインヒビタードメイン、セリンプロテアーゼドメインおよびPDZドメインからなるeatest相同性。 HtrA2は異なるミトコンドリア局在配列からなるN末端 ​​、膜貫通ドメインおよびプロテアーゼおよびPDZドメイン12-16に続いてアポトーシス結合ドメインの阻害剤を持っています。哺乳類HTRA1は、そのプロテアーゼドメイン17-20の活性部位における基質誘導性のリモデリングによって調節され、HtrA2はまた、プロテアーゼ活性21を抑制するセリンプロテアーゼとPDZドメインの相互作用によって調節することができます。興味深いことに、PDZドメインはHtrA3 16と同様の規制を付与することが表示されません。 htrAのプロテアーゼはまた、外因性因子によって調節することができる。それは、最近HTRA1およびプロトポルフィリン22とHtrA2の間の調節的相互作用は、p38 MAPキナーゼの活性化によってリン酸化によって調節することができるが存在することが実証されましたPINK1依存的23で経路。マウスでのhtrAのファミリーの個々のメンバーの削除は、しかし、機械的な影響はほとんどが部分的に目に見える表現型の欠如に不明確である、文書化されています。

HTRA1は、タンパク質品質管理において重要な機能を果たしており、その制御ミスまたは変異は、関節炎、癌およびAMD 3,4,24-32のリスクの増加など、さまざまなヒト疾患と関連しています。加速中の非神経組織の結果から、その損失は33-37老化しつつ神経組織におけるHtrA2機能の喪失は、ヒトおよびマウスにおけるPDの表現型と関連しています。 HtrA3の調節不全は、子癇前症および癌38,39の特定の種類を含む、疾患に関連しています。アップレギュレーションHtrA4のは、子癇前症患者の胎盤で観察されているが、ノックアウトマウスは明白な表現型40,41は表示されません。いくつかのノックアウトマウスで観察された表現型の欠如がありましたhtrAのファミリーメンバー間の補償の結果であると仮定:それはHtrA4とHTRA1両方がHtrA4 41の削除時にHTRA1により補償を可能にする、タンパク質のTGF-Bファミリーと相互作用すると考えられています。同様に、HTRA1とHtrA3がドメイン相同性の高い学位を持っているので、それらが相補機能42を持っているかもしれないと考えられています。しかし、一般的なターゲット43を調節するために競合する、htrAのタンパク質は、部分的に拮抗的役割を有し得ることが示唆されています。

さらに、これらのリスクを調査するためには、3つのヒト化ノックインマウス系統が生成された要因。 CFH TM1(CFH * 9)jhohCFH TM2(CFH * 9)jhohは 、CFH遺伝子のエキソン9はヒト相同体のエクソン9で置換されている。CFHのTM1(CFH * 9)jhohは、非疾患関連チロシンをコード化するにはY402H、リスク関連SNPを運ぶjhoh CFH TM2(CFH * 9)に対し、402位の残基、。に人間ARMS2シーケンスtm1jhoh ARMS2は HTRA1の上流領域を標的としました。以前34に記載されているよう loxP隣接STOP配列遺伝子配列の上流に配置されなく含まUBICプロモーターの下流には、Rosa26遺伝子プロモーターの制御下でCreリコンビナーゼを発現する、OzCreマウスと交配することによって切除しました。加えて、これらのノックインライン、CFHおよびHTRA1(CFH tm1jhohHTRA1のtm1jhoh)、ならびに他の既知のhtrAのファミリーメンバーの条件付きノックアウト対立遺伝子が生成されました:HtrA2(HtrA2tm1jhoh)、HtrA3(HtrA3 tm1jhoh)HtrA4( HtrA4のtm1jhoh)。エクソン3、HTRA1;生殖ノックアウトは、欠失は、フレームシフトおよび/ ​​または活性ドメイン(CFHの削除を引き起こすように、loxP部位で特定のエキソンに隣接するように設計された動物にOzCreマウスを交配することによって作成されたエクソン2-3、HtrA2:エクソン2-4、HtrA3。エクソン3、HtrA4。エクソン4-6)34,41。また、34に記載されている、;ガラス転移温度(Tg(NES-CRE)1Kln / J HtrA2 FLOX)HtrA2の神経削除は、 ネスチンのプロモーターの制御下でCreリコンビナーゼを使用して削除しました。 HtrA2を欠くマウスのみ、いずれかの全身または神経組織では、パーキンソン病の表現型を呈する、明確な表現型を示しました。

関心のこれらの遺伝子のいくつかは、ミトコンドリア11,44-47に局在することが仮定されており、HtrA2の削除はパーキンソン表現型を生成し、ミトコンドリアと神経学を中心とした表現型の計画はここに記載されており、関心の試験からの代表的な結果が提供されているので、 。初期の表現型のスケジュールが2メインに関連する一連のテストからなる、設立された徹底的かつ系統的、加齢関連疾患の人間を調査するために製造し、遺伝的に改変マウスを調べるために興味のある疾患:AMDおよびパーキンソン。

Protocol

倫理文:動物に関わる研究は、実験動物の管理と使用に関するガイドとイェール大学の施設内動物管理使用委員会(IACUC)における衛生勧告の国立研究所に準拠して実施しました。 遺伝子改変マウスの1行動試験注:すべてのマウスは取り扱いに慣れの違いを制限するために、同じ試験レジメンに供されるべきです。試験日の同じ時間に毎回実行される…

Representative Results

このセクションでは、これらの方法を用いて得られる結果の例を説明します。後肢試験では、プル試行回数が行われ、待ち時間は、毎日のための2つの連続した​​試験にわたって合計される落下します。この試験は、減少筋強度を有するマウスを区別するために、遺伝的に異なる群を比較するために使用することができ、図1AのHtrA2のtm1jhoh(HTRA2</s…

Discussion

堅牢な治療法は、ヒトの老化に関連した条件を衰弱させるの影響を制限するために必要な、しかし、彼らは多くの条件のためにとらえどころのないままにされています。潜在的な治療標的を識別し、介入のための戦略を開発するには、加齢に伴う疾患の原因や病態を最初に理解しなければなりません。ていないこれらの遺伝子は、以前にヒトでの研究で条件にリンクされている場合でも、興?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この研究のための資金は、シャクナゲ医療財団とイェール大学医学部ディーンの研究基金(JH)から来ました。私たちは行動実験のヘルプは博士クレアケーニッヒに感謝します。遺伝子操作したマウス系統はOzgene(パース、オーストラリア)で生成されました。

Materials

Ethanol Decon (Fisher Scientific) 435541
50 ml conical tube Fisher Scientific 1443222
cotton balls Walmart
heat mat Sunbeam 0000756-500-000
Holding tray (ice cube tray) Walmart
Electronic stopwatch GOGO PC396
Plexiglass box constructed in workshop 12" by 12" 
Vixia HF R400 Camcorder Canon 8155B004
9oz Clear Cups Walmart
1/4 inch wire mesh Home Depot 204331884 (online) / 554219 (in store) 12" by 12" 
Bubble wrap VWR 470092-416
Straight specimen forceps VWR 82027-438
Fine-tip dissecting forceps VWR 82027-408
Fine scissors VWR 82027-578
Paraformaldehyde 16% solution Electron Microscopy Sciences 15710
10x phosphate buffered saline pH 7.4 American Bioanalytical AB11072-04000
Sucrose JT Baker 4072-01
superfrost slides Fisher Scientific 12-550-15
Hematoxylin Stain Solution Fisher Scientific (Ricca) 353016
Eosin Y Stain Solution Fisher Scientific (Ricca) 2845-32
Tris hydrochloride Sigma T3253
Tris American Bioanalytical AB02000-01000
Nicotinamide adenine dinucleotide, reduced disodium salt hydrate Sigma N8129
Nitrotetrazolium Blue chloride Sigma N6876
Acetone JT Baker 9006-05
Sodium phosphate monobasic monohydrate Sigma S9638
Sodium phosphate dibasic heptahydrate Sigma S9390
Sodium succinate dibasic hexahydrate Sigma S2378
VectaMount aqueous mounting medium Vector Labs H-5501-60
Cover glass Fisher Scientific 12-545-M 60 x 24 mm
AxioImager A1 microscope Zeiss
Video camera tripod Amazon
Optimal Cutting Temperature (OCT) Fischer Scientific 23730571
Cryostat Sectioning  Machine Leica  CM1900 Discontinued but since replaced by CM1950

References

  1. Klein, R. J., et al. Complement factor H polymorphism in age-related macular degeneration. Science. 308, 385-389 (2005).
  2. Zareparsi, S., et al. Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet. 77, 149-153 (2005).
  3. Yang, Z., et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 314, 992-993 (2006).
  4. Dewan, A., et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 314, 989-992 (2006).
  5. Francis, P. J., Zhang, H., Dewan, A., Hoh, J., Klein, M. L. Joint effects of polymorphisms in the HTRA1, LOC387715/ARMS2, and CFH genes on AMD in a Caucasian population. Mol Vis. 14, 1395-1400 (2008).
  6. Cameron, D. J., et al. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle. 6, 1122-1125 (2007).
  7. Herbert, A. P., et al. Structure shows that a glycosaminoglycan and protein recognition site in factor H is perturbed by age-related macular degeneration-linked single nucleotide polymorphism. J Biol Chem. 282, 18960-18968 (2007).
  8. Ding, J. D., et al. Expression of human complement factor h prevents age-related macular degeneration-like retina damage and kidney abnormalities in aged cfh knockout mice. Am J Pathol. 185, 29-42 (2015).
  9. Nakayama, M., et al. Overexpression of HtrA1 and exposure to mainstream cigarette smoke leads to choroidal neovascularization and subretinal deposits in aged mice. Invest Ophthalmol Vis Sci. 55, 6514-6523 (2014).
  10. Liu, J., Hoh, J. Postnatal overexpression of the human ARMS2 gene does not induce abnormalities in retina and choroid in transgenic mouse models. Invest Ophthalmol Vis Sci. 56, 1387-1388 (2015).
  11. Kanda, A., et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A. 104, 16227-16232 (2007).
  12. Zumbrunn, J., Trueb, B. Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett. 398, 187-192 (1996).
  13. Clausen, T., Southan, C., Ehrmann, M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell. 10, 443-455 (2002).
  14. Nie, G. Y., Hampton, A., Li, Y., Findlay, J. K., Salamonsen, L. A. Identification and cloning of two isoforms of human high-temperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2. Biochem J. 371, 39-48 (2003).
  15. Runyon, S. T., et al. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Protein Sci. 16, 2454-2471 (2007).
  16. Glaza, P., et al. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains. PLoS One. 10, e0131142. 10, e0131142 (2015).
  17. Dolmans, D. E., Fukumura, D., Jain, R. K. Photodynamic therapy for cancer. Nat Rev Cancer. 3, 380-387 (2003).
  18. Grau, S., et al. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci U S A. 102, 6021-6026 (2005).
  19. Lecha, M., Puy, H., Deybach, J. C. Erythropoietic protoporphyria. Orphanet J Rare Dis. 4, 19 (2009).
  20. Ethirajan, M., Chen, Y., Joshi, P., Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev. 40, 340-362 (2011).
  21. Li, W., et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol. 9, 436-441 (2002).
  22. Jo, H., Patterson, V., Stoessel, S., Kuan, C. Y., Hoh, J. Protoporphyrins enhance oligomerization and enzymatic activity of HtrA1 serine protease. PLoS One. 9, 115362 (2014).
  23. Bogaerts, V., et al. Genetic variability in the mitochondrial serine protease HTRA2 contributes to risk for Parkinson disease. Hum Mutat. 29, 832-840 (2008).
  24. Baldi, A., et al. The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene. 21, 6684-6688 (2002).
  25. Oka, C., et al. HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development. 131, 1041-1053 (2004).
  26. Chien, J., et al. A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene. 23, 1636-1644 (2004).
  27. Grau, S., et al. The role of human HtrA1 in arthritic disease. J Biol Chem. 281, 6124-6129 (2006).
  28. Chien, J., et al. Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity. J Clin Invest. 116, 1994-2004 (2006).
  29. Chien, J., Campioni, M., Shridhar, V., Baldi, A. HtrA serine proteases as potential therapeutic targets in cancer. Curr Cancer Drug Targets. 9, 451-468 (2009).
  30. Hara, K., et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 360, 1729-1739 (2009).
  31. Jones, A., et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice. Proc Natl Acad Sci U S A. 108, 14578-14583 (2011).
  32. Vierkotten, S., Muether, P. S., Fauser, S. Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch’s membrane via cleavage of extracellular matrix components. PLoS One. 6, e22959 (2011).
  33. Strauss, K. M., et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet. 14, 2099-2111 (2005).
  34. Patterson, V. L., et al. Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1. PLoS One. 9, 115789 (2014).
  35. Jones, J. M., et al. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature. 425, 721-727 (2003).
  36. Martins, L. M., et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol. 24, 9848-9862 (2004).
  37. Kang, S., et al. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging. Cell Death Differ. 20, 259-269 (2013).
  38. Dynon, K., et al. HtrA3 as an early marker for preeclampsia: specific monoclonal antibodies and sensitive high-throughput assays for serum screening. PLoS One. 7, e45956 (2012).
  39. Singh, H., et al. HtrA3 Is Downregulated in Cancer Cell Lines and Significantly Reduced in Primary Serous and Granulosa Cell Ovarian Tumors. J Cancer. 4, 152-164 (2013).
  40. Inagaki, A., et al. Upregulation of HtrA4 in the placentas of patients with severe pre-eclampsia. Placenta. 33, 919-926 (2012).
  41. Liu, J., Li, Y., Hoh, J. Generation and characterization of mice with a conditional null allele of the HtrA4 gene. Mol Med Rep. , (2015).
  42. Bowden, M. A., Di Nezza-Cossens, L. A., Jobling, T., Salamonsen, L. A., Nie, G. Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer. Gynecol Oncol. 103, 253-260 (2006).
  43. Chen, Y. Y., et al. Functional antagonism between high temperature requirement protein A (HtrA) family members regulates trophoblast invasion. J Biol Chem. 289, 22958-22968 (2014).
  44. Fritsche, L. G., et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet. 40, 892-896 (2008).
  45. Beleford, D., Rattan, R., Chien, J., Shridhar, V. High temperature requirement A3 (HtrA3) promotes etoposide- and cisplatin-induced cytotoxicity in lung cancer cell lines. J Biol Chem. 285, 12011-12027 (2010).
  46. Hegde, R., et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem. 277, 432-438 (2002).
  47. Martins, L. M., et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem. 277, 439-444 (2002).
  48. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. J Vis Exp. , (2012).
  49. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008. 2008, (2008).
  50. Wahlsten, D. A developmental time scale for postnatal changes in brain and behavior of B6D2F2 mice. Brain Res. 72, 251-264 (1974).
  51. El-Khodor, B. F., et al. Identification of a battery of tests for drug candidate evaluation in the SMNDelta7 neonate model of spinal muscular atrophy. Exp Neurol. 212, 29-43 (2008).
  52. Brand, M. D., Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochem J. 435, 297-312 (2011).
  53. Chance, B., Williams, G. R., Holmes, W. F., Higgins, J. Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J Biol Chem. 217, 439-451 (1955).
  54. Kamo, N., Muratsugu, M., Hongoh, R., Kobatake, Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 49, 105-121 (1979).
  55. Brown, G. C., Brand, M. D. Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem J. 252, 473-479 (1988).

Play Video

Cite This Article
Patterson, V. L., Thompson, B. S., Cherry, C., Wang, S., Chen, B., Hoh, J. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging. J. Vis. Exp. (113), e54136, doi:10.3791/54136 (2016).

View Video