Summary

DNA电穿孔,肌纤维的分离和成像

Published: December 23, 2015
doi:

Summary

This protocol utilizes electroporation to introduce and express fluorescently labeled proteins in mouse muscle fibers. Following recovery after electroporation, fibers are isolated. Individual fibers are then imaged using high resolution confocal microscopy to visualize muscle structure.

Abstract

Mature muscle has a unique structure that is amenable to live cell imaging. Herein, we describe the experimental protocol for expressing fluorescently labeled proteins in the flexor digitorum brevis (FDB) muscle. Conditions have been optimized to provide a large number of high quality myofibers expressing the electroporated plasmid while minimizing muscle damage. The method employs fluorescent tags on various proteins. Combining this expression method with high resolution confocal microscopy permits live cell imaging, including imaging after laser-induced damage. Fluorescent dyes combined with imaging of fluorescently-tagged proteins provides information regarding the basic structure of muscle and its response to stimuli.

Introduction

单个肌纤维比较大,高度组织化的合体细胞。有几个细胞培养模型为肌肉;然而,这些模型具有与它们不完全分化为成熟肌纤维的主要限制。例如,C2C12和L6细胞系来自于小鼠和大鼠,分别1-4。下血清饥饿的条件下,单核“成肌细胞样”细胞停止增殖,进行细胞周期撤出,并进入生肌程序与肌节形成多核细胞,称为肌管。由于长时间的培养条件,肌管可能会出现收缩特性和文化“抽搐”。人类细胞系现在也已被建立5。除了这些永生化细胞系,单核成肌细胞可以从肌肉和血清饥饿将形成肌管的类似的条件下进行分离。这些细胞系和原发性成肌细胞培养物是高度使用FUL因为它们可以转染的质粒或转导的病毒和用于研究细胞基本生物学过程。但是,这些细胞,即使当诱导以形成肌管,缺乏许多成熟肌肉组织的显着特征。具体地,肌管比单个成熟肌纤维小得多,缺乏肌纤维的正常形状。关键的是,肌管缺乏横(T-)管,需要有效 Ca 2+整个myoplasm释放膜状网络。

的替代方法初级成肌或肌原细胞系造成把成熟的肌纤维。转基因可被用来建立标记蛋白质的表达,但这种方法是昂贵且耗时的。 在体内电穿孔小鼠肌肉的已作为其速度和可靠性6-10的优选方法。

方法用于体内电穿孔和的肌纤维公顷的有效隔离已经经过优化,鼠标趾短屈肌(FDB)肌肉6。该方法可以很容易地完成,是微创在体内表达由质粒诱导。现在这种做法是结合高分辨率成像方法,包括肌膜6,7激光破坏后成像。荧光染料和荧光标记的蛋白质的表达的组合可被用来监测在成熟肌纤维细胞的生物学过程。

Protocol

本研究的方法是在道德根据医学实验动物管理和使用委员会的西北大学Feinberg医学院(IACUC)批准执行准则。所作的所有努力,以尽量减少痛苦。 对于趾短屈肌的体内电 (FDB)肌束在小鼠1.实验步骤使用已知的在哺乳动物细胞中表达的启动子设计的质粒的体内表达 (例如,巨细胞病毒,巨细胞病毒),或在肌肉(例如,肌肉肌酸激酶?…

Representative Results

电穿孔是一种微创技术,有效地引入了纯化的质粒DNA进趾短屈肌(FDB)肌束(图1A)。七天在转染后荧光标记的蛋白可视化隔离肌纤维(图1B)。分离的纤维然后铺板并制备用于成像上的共焦显微镜。纤维可以进行激光诱导的损伤。调频染料可用于识别的膜损伤的位点( 图1C) 在消化过程?…

Discussion

利用电穿孔来研究荧光标记的蛋白质在体内非常适合于肌肉由于缺乏合适的细胞系模型,忠实复制肌的整个细胞结构的研究。这个协议描述电穿孔和高分辨率共焦显微镜的利用率,激光伤人后提供蛋白定位和易位的详细成像。这种方法可以适用于研究其他细胞过程,包括细胞骨架重组,贩运和融合。

使用该协议,高达90%的FDB肌束明示质粒内的肌纤维,这可以容易地通…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是支持的美国国立卫生研究院授予NS047726,NS072027和AR052646。

Materials

DMEM+A2:D32D42A2:D31AA2:D29 Life Technologies 11995-073 Dissection Media
Dilution: 50ml +100g BSA
Collagenase, Type II Life Technologies 17101-015 Fiber Digestion
Dilution: 160mg / 4ml DMEM (stock 40mg/ml aliquot)
Falcon 12-well dishes Fisher Scientific 877229 Fiber Digestion
Ringers Solution Fiber Digestion and Imaging
Dilution: 146 mM NaCl
5 mM   KCl
2 mM   CaCl2
1 mM   MCl2
10mM HEPES
pH7.4 in H2O
1ml Pipettes Axygen T-1000-C-R Digestion
Razor Blades Personna 94-120-71 Digestion
Precision Glide 30G needle BD Biosciences 305128 Dissection
1x PBS (-/-) Life Technologies 14190-250 Dissection
Sylgard 184 Fisher Scientific 50-366-794 Dissection
Forceps FST by Dumont #5/45 Dissection
Forceps Roboz RS-4913 Dissection
Scissors World Precision Instruments 500260 Dissection
BSA Sigma A7906 Dissection media
Dilution: 100mg / 50ml DMEM
Falcon 60mm dishes Fisher Scientific 08772B Dissection- used to hold sylgard
Clay Electroporation
Stimulator  Grass s88x Electroporation
Clamps Radio Shack 270-356 Electroporation
Triadine Aplicare 82-220 Electroporation
Precision Glide 27G needle BD Biosciences 305136 Electroporation
Simulator Grass SIU-V Electroporation
Gauze Covidien 2146 Electroporation
Hyaluronidase Sigma H4272 Injection
Dilution: Add 160ul PBS (1X) to 40µl 5x stock
1cc U-100 Insulin Syringe (28G1/2)  BD Biosciences 329420 Injection
Eppendorf Tubes Fisher Scientific 02-682-550 Injection
35mm glass bottom Microwell dish MaTek P35G-1.5-14-C Microscopy
FM 4-64 Life Technologies T-13320 Microscopy
Dilution: Final 2.5 ug/ml
FM 1-43 Life Technologies T-35356 Microscopy
Dilution: Final 2.5 ug/ml
Endotoxinfree Plasmid Maxi Kit Qiagen 12362 Plasmid Purification

References

  1. Blau, H. M., et al. Plasticity of the differentiated state. Science. 230, 758-766 (1985).
  2. Yaffe, D., Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 270, 725-727 (1977).
  3. Richler, C., Yaffe, D. The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev Biol. 23, 1-22 (1970).
  4. Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA. 61, 477-483 (1968).
  5. Mamchaoui, K., et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet muscle. 1, 34 (2011).
  6. DiFranco, M., Quinonez, M., Capote, J., Vergara, J. DNA transfection of mammalian skeletal muscles using in vivo electroporation. J Vis Exp: JoVE. , (2009).
  7. Swaggart, K. A., et al. Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proc Natl Acad Sci USA. 111, 6004-6009 (2014).
  8. Kerr, J. P., et al. Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane. Proc Natl Acad Sci USA. 110, 20831-20836 (2013).
  9. Anderson, D. M., et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 160, 595-606 (2015).
  10. Roche, J. A., et al. Physiological and histological changes in skeletal muscle following in vivo gene transfer by electroporation. Am J Physiol Cell Physiol. 301, C1239-1250 (2011).
  11. Reddy, A., Caler, E. V., Andrews, N. W. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 106, 157-169 (2001).
  12. Wang, B., et al. Membrane blebbing as an assessment of functional rescue of dysferlin-deficient human myotubes via nonsense suppression. J Appl physiol. 109, 901-905 (2010).
  13. Cai, C., et al. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol. 11, 56-64 (2009).
  14. Marg, A., et al. Sarcolemmal repair is a slow process and includes EHD2. Traffic. 13, 1286-1294 (2012).
  15. Bansal, D., et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 423, 168-172 (2003).
  16. Defour, A., et al. Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis. 5, e1306 (2014).

Play Video

Cite This Article
Demonbreun, A. R., McNally, E. M. DNA Electroporation, Isolation and Imaging of Myofibers. J. Vis. Exp. (106), e53551, doi:10.3791/53551 (2015).

View Video