Summary

宿主細胞のRNA合成でウイルス感染の効果を測定するためにクリックケミストリーを用いた

Published: August 09, 2013
doi:

Summary

この方法は、リフトバレー熱ウイルス(RVFV)MP-12株による感染の後、宿主細胞転写の変化を測定するためにクリックケミストリーの使用を記載している。結果は、蛍光顕微鏡を介して、定性的に可視化またはフローサイトメトリーを介して定量的に得ることができる。この方法は、他のウイルスとの使用に適合可能である。

Abstract

多くのRNAウイルスは、細胞の防御を回避する手段として、宿主細胞の転写を阻害する能力を進化させてきた。これらのウイルスの研究のために、感染細胞において転写活性を測定する迅速かつ信頼できる方法を有することが重要である。伝統的に、転写はH-ウリジンは、このような免疫を介して検出が続き、5 -ブロモウリジン(BRU)などのハロゲン化ウリジン類似体のオートラジオグラフィーまたはシンチレーション計数、または組み込みを介した検出が続く3などの放射性ヌクレオシドの取り込みのいずれかにより測定された。 BRUの検出が煩雑になることができ、低感度に苦しむかもしれない放射性同位体の使用は、しかしながら、特殊な装置を必要とし、実験室の設定の数には不可能である。

アジドとアルキンから銅触媒トリアゾール形成を含む最近開発されたクリックケミストリーは、今では迅速かつhighlを提供していますこれら2つの方法にyを敏感代わる。クリックケミストリーは、新生RNAは、第1の蛍光アジドとの標識の検出に続いてアナログウリジン-5 – ethynyluridine(EU)の取り込みにより標識された2段階プロセスである。これらのアジドは可視化のためのオプションの広い範囲を可能にする、いくつかの異なる蛍光体として利用可能です。

このプロトコルは、クリックケミストリーを用いたリフトバレー熱ウイルス(RVFV)株MP-12に感染した細胞内で転写抑制を測定する方法を説明しています。同時に、これらの細胞におけるウイルスタンパク質の発現は、古典的な細胞内の免疫染色によって決定される。 4詳細手順1〜8詳細を通して、フローサイトメトリーを介した転写抑制を定量化する方法を、手順5ながら、蛍光顕微鏡を介した転写抑制を可視化する方法。このプロトコルは、他のウイルスとの使用に容易に適応可能である。

Introduction

伝統的に、転写活性は、放射性(3 H-ウリジン)1のいずれかの取り込みを介して測定または新生RNAに(BRU)2ヌクレオシドハロゲン化されています。これらウリジン類似体は、細胞に取り込まヌクレオシドサルベージ経路を介しウリジン三リン酸(UTP)に変換され、続いて新たに合成されたRNAに組み込ま。3 H-ウリジンは、時間がかかることがオートラジオグラフィー、またはシンチレーションによって検出することができているカウント、特殊な装置を必要とします。さらに、放射性同位元素の使用が高い封じ込めバイオ研究所を含め、実験室の設定の数には実用的ではないかもしれない。 BRUは、RNA二次構造は、抗体結合のための立体障害かもしれないとして、RNAの核または部分変性に対する抗体のアクセスを確保するため厳しい透過処理が必要になる場合があります抗BRU抗体による免疫染色で検出することができます。

_content ">ここで記述されたプロトコルは、最近RVFV株MP-12に感染した細胞内で転写活性を測定する化学3をクリックして開発した。クリックケミストリーは非常に選択的かつ効率的な銅(I)触媒によるアルキンとの間の付加環化反応に依存して利用4,5アジド部分は、このプロトコルでは、感染細胞における新生RNAは、第ウリジンアナログEUの取り込みを介して標識される。第二 ​​工程では、取り込まれたEU、蛍光アジドとの反応により検出される。この方法の主な利点はそれは放射性同位元素の使用を必要とせず、それはRNAの過酷な透過又は変性を必要としないこと。50μm未満Daの分子量と(2)、蛍光アジドのアクセスが不十分なことによって妨げられない(1)ということである透過またはRNAの二次構造。クラスにRNAの検出を組み合わせた場合また、研究者は一次抗体の彼らの選択に限定されるものではないウイルスタンパク質の免疫染色のiCal。

蛍光顕微鏡(ステップ1-4)を介して転写を可視化するための一つであり、フローサイトメトリー(ステップ5-8)を介して転写を定量化するためのいずれかの2つの異なる方法は、このプロトコルに記載されている。どちらの方法でも、セル単位で転写活性とウイルス感染との間の相関を可能にするウイルスタンパク質に対する免疫細胞内で新生RNAの標識を結合する。

著者らは、正常プロトコルがRVFV株MP-12 6、トスカーナウイルス(TOSV)10に感染した別のMP-12変異体7,8、9、及び細胞に感染した細胞に感染した細胞において転写活性を決定するために、ここで説明に使用した。ここで説明するプロトコルは、簡単に異なるウイルスの使用に適合し、特定のウイルス又は細胞タンパク質の免疫蛍光染色を含むように修正される可能性を有することができる。

Protocol

蛍光顕微鏡法による転写の分析 1。 EUとのMP-12とラベル新生RNAと細胞に感染 12ウェル組織培養プレート中に場所が12mmの円形カバーガラス、ウェルごとにカバースリップ。 注:細胞がウェル内に配置する前に、トラブルカバーガラスに付着し、ポリ-L-リジン(MW≥70,000)とコートを持っている場合。この目的のために、5分間のポ?…

Representative Results

P62のプロテアソームによる分解を促進することにより隔離することでは、(i)基本転写因子TFIIH 11と、(ii)のP44サブユニット:RVFVのNSsのタンパク質は、( ブニヤウイルス科 、属フレボ )11は、2つの異なるメカニズムを通じて宿主細胞一般的な転写を阻害TFIIH 6のサブユニット。 MP-12株は、生物学的安全性レベル2実験室で処理することができ、他の野?…

Discussion

提供されたプロトコールは、新生RNAへウリジンアナログEUの取り込みを介して宿主細胞の転写に対するウイルス感染の影響を測定するための方法が記載されている。それは、高速で敏感であり、それは、放射性同位元素の使用に依存しない:この方法は、従来の方法に比べていくつかの利点を有する。さらに、この方法は、蛍光顕微鏡又は本質的に同じ試薬を用いてフローサイトメトリーを?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

私たちは、フローサイトメトリーのヘルプのためにUTMBフローサイトメトリーコアファシリティのマウスポリクローナル抗RVFV抗血清とM.グリフィンを提供するためにRBテッシュに感謝します。サポートされていたこの作品は、NIHの助成金R01 AI08764301、優秀西部地域センターを通じて5 U54 AI057156によってサポートされていました、そしてUTMB.BKにおけるワクチン開発のためのシーリーセンターから資金がUTMB.OLでジェームズ·W·マクラフリンフェローシップ基金によってサポートされていましたモーリスR.ハイルマン早期キャリア調査官賞によって。

Materials

Name of Reagent/Material Company Catalog Number Comments
5-ethynyl-uridine Berry & Associates PY 7563 dissolve in DMSO for 100 mM stock
12-mm round coverslips Fisherbrand 12-545-82  
5 ml polystyrene tubes BD Biosciences 352058  
Actinomycin D (ActD) Sigma 9415 dissolve in DMSO for 10 mM stock
Alexa Fluor 488 goat anti-mouse IgG Invitrogen A-11029  
Bovine Serum Albumin (BSA) Santa Cruz sc-2323  
CuSO4 Sigma C-8027 dissolve in H2O for 100 mM stock
DAPI Sigma D-9542 dissolve in H2O for 5 mg/ml stock
DMEM Invitrogen 11965092  
FBS Invitrogen 16000044  
fluorescent azide (Alexa Fluor 594-coupled) Invitrogen A10270  
fluorescent azide (Alexa Fluor 657-coupled) Invitrogen A10277  
Fluoromount-G Southern Biotech 0100-01  
L-ascorbic acid Sigma A-5960 dissolve in H2O for 500 mM
paper filter VWRbrand 28333-087  
paraformaldehyde Sigma 158127  
Penicillin-Streptomycin Invitrogen 15140122  
poly-L-lysine (MW ≥ 70000) Sigma P1274  
Triton X-100 Sigma T-8787  
Trizma base Sigma T-1503 dissolve in H2O for 1.5 M stock, pH 8.5
Trypsin-EDTA Invitrogen 25200056  
Fluorescence Microscope     e.g. Olympus IX71
Flow Cytometer     e.g. BD Biosciences LSRII Fortessa

References

  1. Fakan, S. Structural support for RNA synthesis in the cell nucleus. Methods Achiev. Exp. Pathol. 12, 105-140 (1986).
  2. Jensen, P. O., Larsen, J., Christiansen, J., Larsen, J. K. Flow cytometric measurement of RNA synthesis using bromouridine labelling and bromodeoxyuridine antibodies. Cytometry. 14, 455-458 (1993).
  3. Jao, C. Y., Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. U.S.A. 105, 15779-15784 (2008).
  4. Rostovtsev, V. V., Green, L. G., Fokin, V. V., Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem. Int. Ed. Engl. 41, 2596-2599 (2002).
  5. Tornoe, C. W., Christensen, C., Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057-3064 (2002).
  6. Kalveram, B., Lihoradova, O., Ikegami, T. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62. J. Virol. 85, 6234-6243 (2011).
  7. Kalveram, B., et al. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent protein kinase PKR. Virology. , (2012).
  8. Head, J. A., Kalveram, B., Ikegami, T. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation. PLoS One. 7, e45730 (2012).
  9. Lihoradova, O. A., et al. Characterization of Rift Valley Fever Virus MP-12 Strain Encoding NSs of Punta Toro Virus or Sandfly Fever Sicilian Virus. PLoS Negl Trop Dis. 7, e2181 (2013).
  10. Kalveram, B., Ikegami, T. Toscana Virus NSs Protein Promotes Degradation of Double-Stranded RNA-Dependent Protein Kinase. J. Virol. , (2013).
  11. Schmaljohn, C., Nichol, S., Knipe, D. M., et al. . In Fields Virology. , 1741-1789 (2007).
  12. Le May, N., et al. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell. 116, 541-550 (2004).
  13. Caplen, H., Peters, C. J., Bishop, D. H. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol. 66, 2271-2277 (1985).
  14. Ikegami, T., Won, S., Peters, C. J., Makino, S. Rescue of infectious Rift Valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J. Virol. 80, 2933-2940 (2006).
  15. Vyboh, K., Ajamian, L., Mouland, A. J. Detection of viral RNA by fluorescence in situ hybridization (FISH). J. Vis. Exp. , e4002 (2012).
  16. Reich, E., Goldberg, I. H. Actinomycin and nucleic acid function. Prog. Nucleic Acid Res. Mol. Biol. 3, 183-234 (1964).
  17. Holmes, K. L., Lantz, L. M., Russ, W. Conjugation of fluorochromes to monoclonal antibodies. Curr. Protoc. Cytom. Chapter 4 (Unit 4 2), (2001).

Play Video

Cite This Article
Kalveram, B., Lihoradova, O., Indran, S. V., Head, J. A., Ikegami, T. Using Click Chemistry to Measure the Effect of Viral Infection on Host-Cell RNA Synthesis. J. Vis. Exp. (78), e50809, doi:10.3791/50809 (2013).

View Video