Summary

全卡口成像,用于可视化和量化周边晶状体结构、细胞形态和组织

Published: January 19, 2024
doi:

Summary

本方案描述了用于眼晶状体中周边结构可视化的新型全卡口成像以及图像量化方法。这些协议可用于研究,以更好地了解晶状体微观结构与晶状体发育/功能之间的关系。

Abstract

人工晶状体是一种透明的柔性组织,可以改变其形状以将不同距离的光聚焦到视网膜上。除了围绕器官的基底膜(称为囊)外,晶状体完全由前半球的单层上皮细胞和大量晶状体纤维细胞组成。在整个生命中,上皮细胞在晶状体赤道的萌发区增殖,赤道上皮细胞迁移、伸长并分化为新形成的纤维细胞。赤道上皮细胞的形态从随机堆积的鹅卵石状细胞转变为排列的六边形细胞,形成经线行。新形成的晶状体纤维细胞保持六边形细胞形状,并向前极和后极伸长,形成覆盖在前几代纤维上的新细胞壳。关于驱动晶状体上皮细胞显着形态发生到纤维细胞的机制知之甚少。为了更好地了解晶状体结构、发育和功能,已经开发了新的成像方案,以使用整个眼晶状体对外围结构进行成像。在这里,显示了量化胶囊厚度、上皮细胞面积、细胞核面积和形状、经向行细胞顺序和堆积以及纤维细胞宽度的方法。这些测量对于阐明终生晶状体生长过程中发生的细胞变化以及了解随着年龄或病理而发生的变化至关重要。

Introduction

人工晶状体是位于眼睛前部的柔性透明组织,其功能是将光线精细聚焦到视网膜上。镜头的功能能力可以部分归因于其复杂的结构和组织 1,2,3,4,5,6。晶状体组织周围是囊,囊是维持晶状体结构和生物力学特性所必需的基底膜7,8,9。晶状体本身完全是细胞状的,由两种细胞类型组成:上皮细胞和纤维细胞。上皮层由覆盖晶状体10前半球的单层立方体细胞组成。在整个生命中,上皮细胞增殖并沿着晶状体囊向晶状体赤道迁移。前上皮细胞在横截面上是静止的鹅卵石状的,在晶状体赤道附近,上皮细胞增殖并开始经历分化过程,形成新的纤维细胞11,12。赤道上皮细胞从随机堆积的细胞转变为具有六边形细胞的有组织的子午线行。六边形细胞形状保持在这些分化细胞的基底侧,而顶端收缩并锚定在晶状体支点或晶状体4131415。当赤道上皮细胞开始伸长成新形成的纤维细胞时,细胞的顶端沿着前上皮细胞的顶端表面向前极迁移,而基底尖端沿晶状体囊向后极移动。新一代纤维细胞覆盖前几代细胞,形成球形纤维壳。在细胞伸长和成熟过程中,纤维细胞显著改变其形态11,12,16。这些纤维细胞构成晶状体质量11,12,16,17,18的大部分。

有助于建立复杂的晶状体微观结构、细胞形态和独特细胞组织的分子机制尚不完全清楚。此外,晶状体囊和晶胞结构对整体晶状体功能(透明度、晶状体形状变化)的贡献尚不清楚。然而,这些关系正在使用新的成像方法和对晶状体结构和细胞特征的定量评估来阐明 2,4,19,20,21,22。已经开发了对整个晶状体进行成像的新方案,这些方案允许对晶状体囊、上皮细胞和外周纤维细胞进行高空间分辨率可视化。这包括量化胶囊厚度、细胞大小、细胞核大小和圆度、经向行顺序、纤维细胞堆积和纤维细胞宽度的方法。这些可视化和图像定量方法允许进行深入的形态测量检查,并且通过保留整体 3D 组织结构,与其他可视化方法(平面或组织切片成像)相比具有优势。这些方法允许测试新的假设,并将持续推进对晶状体细胞模式发展和功能的理解。

对于以下实验,我们在 6 至 10 周龄的 C57BL/6J 背景下使用野生型和 Rosa26-tdTomato 小鼠串联二聚体-番茄 (B6.129(Cg)-Gt(ROSA) (tdTomato)23 (Jackson Laboratories)。tdTomato 小鼠通过表达 tdTomato 蛋白与突变 MARCKS 蛋白的 N 端 8 个氨基酸融合,通过 N 端肉豆蔻基化和内部半胱氨酸-棕榈酰化位点靶向质膜,从而在活体晶状体中可视化细胞质膜23。我们还使用最初从Robert Adelstein博士(美国国立卫生研究院国家心脏,肺和血液研究所,贝塞斯达,马里兰州)获得的NMIIAE1841K / E1841K 小鼠24 。如前所述20,在FvBN / 129SvEv / C57Bl6背景中丢失CP49珠状中间丝蛋白(保持成熟的纤维细胞形态和整个晶状体生物力学)的NMIIAE1841K / E1841K小鼠与C57BL6 / J野生型小鼠回交。我们筛选了后代是否存在野生型 CP49 等位基因。

在激光扫描共聚焦荧光显微镜上进行共聚焦成像,放大倍数为20倍(NA = 0.8,工作距离=0.55mm,1倍变焦),40倍(NA = 1.3油物镜,工作距离=0.2mm,1倍变焦)或63倍(NA = 1.4油物镜,工作距离=0.19mm,1倍变焦)放大倍率。所有图像均使用针孔尺寸(光学截面厚度的决定因素)采集,精确到 1 艾里单位(由此产生的光学厚度在图例中说明)。图像在Zen软件上处理。图像被导出为.tif格式,然后导入FIJI ImageJ软件(imageJ.net)。

Protocol

小鼠被饲养在特拉华大学的动物设施中,保持在无病原体的环境中。所有动物程序,包括吸入 CO2 的安乐死,均按照特拉华大学机构动物护理和使用委员会 (IACUC) 批准的动物协议进行。 1. 整个镜头卡口准备和成像 固定镜头进行全卡口成像安乐死后,如前所述,摘除眼睛并解剖晶状体25.解剖后,立即将镜片转移到室温下新…

Representative Results

晶状体前囊、上皮细胞区和核区为了分析晶状体胶囊的厚度,我们用WGA对活体或固定镜片中的晶状体胶囊进行染色。我们通过在活晶状体中用tdTomato标记膜来鉴定晶状体上皮细胞(图2A),或通过罗丹明 – 鬼笔环肽染色在固定晶状体的细胞膜上对F-肌动蛋白进行染色(图2B)。在正交 (XZ) 投影中,WGA 和 tdTomato/罗丹明-鬼笔环肽染色使我?…

Discussion

所描述的方案能够实现晶状体前部和赤道区域周边晶状体结构和细胞的高空间分辨率可视化。在这项研究中,展示了使用完整(动态或固定)镜头可视化镜头周边结构的方法,其中保留了整体 3D 镜头结构。此外,还提供了使用公开可用的FIJI ImageJ软件进行形态定量分析的简单方法。在以前的研究中已经使用了整个安装点的可视化和量化方法。这些方法使我们能够了解前囊和细胞对晶状体形状变化?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国家眼科研究所资助 R01 EY032056 到 CC 和 R01 EY017724 到 VMF 的支持,以及国家普通医学科学研究所的资助编号为 P20GM139760。作为化学-生物学界面博士前培训计划的一部分,S.T.I 得到了 NIH-NIGMS T32-GM133395 的支持,并获得了特拉华大学研究生学者奖。

Materials

3 mm Biopsy Punch Acuderm Inc NC9084780
Agarose Apex BioResearch Products 20-102GP
Antimycotic/Antibiotic Cytiva SV30079.01
Bovine Serum Albumin (Fraction V) Prometheus 25-529
Delicate task wipes Kimwipe
Glass bottomed dish (Fluorodish) World Precision International FD35-100
Hoescht 33342 Biotium 40046
Laser scanning confocal Microscope 880 Zeiss
MatTek Imaging Dish MatTek Life Sciences P35G-1.5-14
Paraformaldehyde  Electron Microscopy Sciences 100503-917
PBS GenClone 25-507B
Phenol red-free medium 199 Gibco 11043023
Rhodamine-Phalloidin Thermo Fisher 00027
Triton X100 Sigma-Aldrich 11332481001
WGA-640 Biotium CF 640R

References

  1. Gokhin, D. S., et al. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One. 7 (11), e48734 (2012).
  2. Cheng, C., et al. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging (Albany NY). 11 (24), 12497-12531 (2019).
  3. Cheng, C., et al. Tropomodulin 1 regulation of actin is required for the formation of large paddle protrusions between mature lens fiber cells. Invest Ophthalmol Vis Sci. 57 (10), 4084-4099 (2016).
  4. Parreno, J., Cheng, C., Nowak, R. B., Fowler, V. M. The effects of mechanical strain on mouse eye lens capsule and cellular microstructure. Mol Biol Cell. 29 (16), 1963-1974 (2018).
  5. Sindhu Kumari, S., et al. Role of Aquaporin 0 in lens biomechanics. Biochem Biophys Res Commun. 462 (4), 339-345 (2015).
  6. Martin, J. B., et al. Arvcf dependent adherens junction stability is required to prevent age-related cortical cataracts. Front Cell Dev Biol. 10, 840129 (2022).
  7. Danysh, B. P., Duncan, M. K. The lens capsule. Exp Eye Res. 88 (2), 151-164 (2009).
  8. Mekonnen, T., et al. The lens capsule significantly affects the viscoelastic properties of the lens as quantified by optical coherence elastography. Front Bioeng Biotechnol. 11, 1134086 (2023).
  9. Fincham, E. F. The function of the lens capsule in the accommodation of the eye. Trans Optical Society. 30 (3), 101 (1929).
  10. Cheng, C., Nowak, R. B., Fowler, V. M. The lens actin filament cytoskeleton: Diverse structures for complex functions. Exp Eye Res. 156, 58-71 (2017).
  11. Bassnett, S., Sikic, H. The lens growth process. Prog Retin Eye Res. 60, 181-200 (2017).
  12. Sikic, H., Shi, Y., Lubura, S., Bassnett, S. A full lifespan model of vertebrate lens growth. R Soc Open Sci. 4 (1), 160695 (2017).
  13. Cheng, C., Ansari, M. M., Cooper, J. A., Gong, X. EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development. 140 (20), 4237-4245 (2013).
  14. Sugiyama, Y., Akimoto, K., Robinson, M. L., Ohno, S., Quinlan, R. A. A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol. 336 (2), 246-256 (2009).
  15. Zampighi, G. A., Eskandari, S., Kreman, M. Epithelial organization of the mammalian lens. Exp Eye Res. 71 (4), 415-435 (2000).
  16. Lovicu, F. J., Robinson, M. L. . Development of the Ocular Lens. , (2011).
  17. Kuszak, J. R., Zoltoski, R. K., Sivertson, C. Fibre cell organization in crystalline lenses. Exp Eye Res. 78 (3), 673-687 (2004).
  18. Cvekl, A., Ashery-Padan, R. The cellular and molecular mechanisms of vertebrate lens development. Development. 141 (23), 4432-4447 (2014).
  19. Vu, M. P., Cheng, C. Preparation and immunofluorescence staining of bundles and single fiber cells from the cortex and nucleus of the eye lens. J Vis Exp. (196), e65638 (2023).
  20. Islam, S. T., Cheng, C., Parreno, J., Fowler, V. M. Nonmuscle myosin IIA regulates the precise alignment of hexagonal eye lens epithelial cells during fiber cell formation and differentiation. Invest Ophthalmol Vis Sci. 64 (4), 20 (2023).
  21. Patel, S. D., Aryal, S., Mennetti, L. P., Parreno, J. Whole mount staining of lenses for visualization of lens epithelial cell proteins. MethodsX. 8, 101376 (2021).
  22. Parreno, J., et al. Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells. Front Cell Dev Biol. 10, 983178 (2022).
  23. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45 (9), 593-605 (2007).
  24. Zhang, Y., et al. Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood. 119 (1), 238-250 (2012).
  25. Cheng, C., Gokhin, D. S., Nowak, R. B., Fowler, V. M. Sequential application of glass coverslips to assess the compressive stiffness of the mouse lens: Strain and morphometric analyses. J Vis Exp. (111), e53986 (2016).
  26. Riedl, J., et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 5 (7), 605-607 (2008).
  27. Lukinavicius, G., et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods. 11 (7), 731-733 (2014).

Play Video

Cite This Article
Emin, G., Islam, S. T., King, R. E., Fowler, V. M., Cheng, C., Parreno, J. Whole Mount Imaging to Visualize and Quantify Peripheral Lens Structure, Cell Morphology, and Organization. J. Vis. Exp. (203), e66017, doi:10.3791/66017 (2024).

View Video