Summary

罗斯手术的啮齿动物模型:全身位置的同源肺动脉移植植入

Published: April 01, 2022
doi:

Summary

我们演示了如何建立肺根植入降主动脉的小鼠模型,以模拟Ross手术。该模型能够对全身位置的肺自体移植重塑进行中长期评估,这是制定治疗策略以促进其适应的基础。

Abstract

Ross主动脉瓣疾病手术由于其出色的长期结果而重新获得了新的兴趣。然而,当用作独立根部替代术时,描述了肺自体移植的可能扩张和随后的主动脉瓣反流。已经提出了几种动物模型。然而,这些通常仅限于 离体 模型或相对昂贵的大型动物模型的 体内 实验。在这项研究中,我们试图建立一种在全身位置植入肺动脉移植(PAG)的啮齿动物模型。总共包括39只成年刘易斯大鼠。安乐死后立即从供体动物身上摘取肺根(n=17)。同源受体(n = 17)和假手术(n = 5)大鼠镇静并通气。在接受组,PAG在肾下腹主动脉位置植入端到端吻合器。假手术大鼠仅接受主动脉的横切和再吻合。对动物进行连续超声检查两个月和死后组织学分析。原生位置的PAG直径中位数为3.20毫米(IQR=3.18-3.23)。随访时,PAG的中位直径在1周时为4.03 mm(IQR=3.74~4.13),1个月时为4.07 mm(IQR=3.80~4.28),2个月时为4.27 mm(IQR=3.90~4.35)(p<0.01)。1周时收缩速度峰值为220.07 mm/s(IQR=210.43-246.41),1个月时为430.88 mm/s(IQR=375.28-495.56),2个月时为373.68 mm/s(IQR=305.78-429.81),与实验结束时的假手术组(p=0.5)没有差异。组织学分析未显示任何内皮血栓形成的体征。这项研究表明,啮齿动物模型可以评估肺根对高压系统的长期适应性。系统放置的同源PAG植入代表了开发和评估新型手术技术和药物治疗的简单可行的平台,以进一步改善Ross手术的结果。

Introduction

先天性主动脉瓣狭窄是先天性心脏病的一个亚组,其特征在于左心室梗阻,其中病变位于瓣膜水平。畸形影响每1000名活产婴儿约0.04-0.38人1

可用于校正的选项很多,每个选项都有自己的优点和缺点。对于适合进行双心室矫正的患者2,该方法可能针对瓣膜修复(经皮或手术瓣膜切开术)或其替代治疗3。当主动脉瓣被认为无法挽救时,后者是首选;然而,对于儿科患者,可用的选择是有限的。事实上,生物瓣膜由于早期钙化,不适合年轻人群中的主动脉置换术4。另一方面,机械瓣膜的退化速度要慢得多,但这些需要终身抗凝治疗5。此外,这些假体的主要局限性表现为缺乏生长潜力,这使患者容易进行额外的再干预。

儿科人群中一个有趣的治疗选择是将肺自体移植物转移到名为”Ross手术”的主动脉位置。在这种情况下,肺动脉瓣随后被同种移植物取代(图16。该手术可能是儿童的最佳手术选择,因为肺自体移植物保留了其生长潜力,并且没有终身抗凝治疗的风险。此外,Ross手术在年轻人中也具有很高的价值,可以避免机械或生物瓣膜,有可能成为最佳的手术解决方案。

肺自体移植术置换主动脉瓣后的效果非常好,生存率高于98%,长期结局良好7。文献研究显示,在 4 年和 12 年时,肺同种移植物的替代率分别为 93% 和 90%8

该手术的主要局限性是自体移植物在长期内扩张的趋势,特别是当用作独立根部替代物时。这可能导致瓣膜功能不全,可能需要再次干预。事实上,迄今为止进行的最长的随访研究报告称,自体移植替代术在10年时为88%,在20年时为75%9

在实验环境中重建Ross手术的可能性代表了研究肺自体移植适应全身压力的潜在机制的基本先决条件。过去曾提出过几种模式。然而,这些通常仅限于 离体 实验或具有相对昂贵的大型动物的 体内 动物模型。在这项研究中,我们试图建立一种啮齿动物模型,将肺动脉移植(PAG)植入在全身位置,作为独立根。

Protocol

所有程序均已获得帕多瓦大学动物护理委员会(OPBA,协议编号N°55/2017)的批准,并得到意大利卫生部的授权(授权号700/2018-PR),符合欧盟指令2010/63 / UE和意大利实验室动物护理和使用法律26/2014。 1. 动物护理和实验模型 确保所有刘易斯大鼠都是从一家公司获得的(材料表)。将老鼠养在传统设施中,免费获得食物和水。 确保受体组?…

Representative Results

本研究共纳入39只成年刘易斯大鼠:17只动物作为PAG供体,17只动物作为受体,5只作为假手术(对照组)(表1)。雄性大鼠为22只(56%),雌性为17只(44%);后者仅用于捐助集团。 手术期间未发生致命事件,存活率为100%。在随访期间,移植组的两只动物分别在12天和51天时有致命的结果;研究结束时的存活率为91%(表1)。 受体组大…

Discussion

由于自体移植的有利特征和潜在生长,使用自体肺根置换主动脉瓣(Ross手术)是先天性主动脉瓣狭窄修复的一个有吸引力的选择10。该手术的主要局限性是主动脉新瓣膜的潜在扩张,这容易导致长期反流的发展。表征暴露于全身压力后肺动脉修饰的可能性可能是理解肺自体移植失败原因的基础。因此,我们开发了一种在啮齿动物模型中全身位置植入同源PAG的实验模型。

<p class…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该研究由2019年跨部门研究综合预算(BIRD)资助。

Materials

0.9% Sodium Chloride Monico SpA AIC 030805105 Two bottles of 100 mL. The cold one (4°C) for flushing the harvesting organ; the warm one (39°C) for moistening, and rehydration of the recipient
7.5% Povidone-Iodine B Braun AIC 032151211
Barraquer Aesculap FD 232R Straight micro needle holder for the vascular anastomoses
Castroviejo needle holder Not available J 4065 To close the animal
Clip applying forceps Rudolf Medical RU 3994-05 For clip application
Cotton swabs Johnson & Johnson Medical SpA N/A Supermarket product. Sterilized
Curved micro jeweller forceps Rudolf Medical RU 4240-06 Used to pass sutures underneath the vases.
Depilatory cream RB healthcare N/A Supermarket product
Electrocautery machine LED SpA Surton 200
Fine scissors Rudolf Medical RU 2422-11 For opening the abdomen (recipient)
Fine-tip curved Vannas micro scissors Aesculap OC 497R Only for preparing the pulmonary root, cut the lumbar vases and the 10/0 Prolene
Fluovac Isoflurane/Halotane Scavanger unit Harvard Apparatus Ltd K 017041 Complete of anesthesia machine, anesthesia tubing, induction chamber and scavenger unit with absorbable filter
Gentamycin MSD Italia Srl AIC 020891014 Antibiotic. Single dose, 5 mg/kg intramuscular, administered during surgery
Heparin Pharmatex Italia Srl AIC 034692044 500 IU into the recipient abdominal vena cava
I.V. Catheter Smiths Medical Ltd 4036 20G
Insulin Syringe, 1 mL Fisher Scientific 14-841-33 To inject heparin in the harvesting animal and to flush the sectioned aorta in the recipient
Jeweler bipolar forceps GIMA SpA 30665 0.25 mm tip. For electrocautery of very small vases
Lewis rats (LEW/HanHsd) Envigo RMS SRL, San Pietro al Natisone, Udine, Italy 86104M Male or female, weighing 200-250 g (pulmonary root harvesting animals) and 320-400 g (recipients)
Micro-Mosquito Rudolf Medical RU 3121-10 In number of four, with tips covered with silicon tubing. To keep in traction the Prolene suture during anastomosis
Operating microscope Leica Microsystems M 400-E Used with 6x, 10x and 16x in-procedure interchangeable magnifications
Perma-Hand silk 2-0 Johnson & Johnson Medical SpA C026D To lift the aorta
Petrolatum ophthalmic ointment Dechra NDC 17033-211-38
Prolene 10-0 Johnson & Johnson Medical SpA W2790 Very fine non-absorbable suture, with a BV75-3 round bodied needle, for the vascular anastomoses
Retractors Not any N/A Two home-made retractors
Ring tip micro forceps Rudolf Medical RU 4079-14 For delicate manipulation
Sevoflurane AbbVie Srl AIC 031841036 Mixed with oxygen, for inhalatory anesthesia
Spring type micro scissors Rudolf Medical RU 2380-14 Straight; 14 cm long
Standard aneurysm clips Rudolf Medical RU 3980-12 Two clips (7.5 mm; 180 g; 1.77 N) to close the aorta
Sterile gauze of non-woven fabric material Luigi Salvadori SpA 26161V 7.5×7.5 cm, four layers
Straight Doyen scissors Rudolf Medical RU/1428-16 For use to the donor
Straight micro jeweller forceps Rudolf Medical RU 4240-04 10.5 cm long. Used throughout the anastomosis
Syringes Artsana SpA N/A 20 mL (for the harvesting animal) and 5 mL (for the recipient). For saline flushing and dipping
TiCron 4-0 Covidien CV-331 For closing muscles and skin
Tissue forceps V. Mueller McKesson CH 6950-009 Used for skin and muscles
Tramadol SALF SpA AIC 044718029 Analgesic. Single dose, 5 mg/kg intramuscular
Virgin silk 8-0 Johnson & Johnson Medical SpA W818 For arterial branch ligation

References

  1. Botto, L. D., Correa, A., Erickson, J. D. Racial and temporal variations in the prevalence of heart defects. Pediatrics. 107 (3), 32 (2001).
  2. Vergnat, M., et al. Aortic stenosis of the neonate: A single-center experience. The Journal of Thoracic and Cardiovascular Surgery. 157 (1), 318-326 (2019).
  3. Hraška, V., et al. The long-term outcome of open valvotomy for critical aortic stenosis in neonates. The Annals of Thoracic Surgery. 94 (5), 1519-1526 (2012).
  4. Kaza, A. K., Pigula, F. A. Are bioprosthetic valves appropriate for aortic valve replacement in young patients. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual. 19 (1), 63-67 (2016).
  5. Myers, P. O., et al. Outcomes after mechanical aortic valve replacement in children and young adults with congenital heart disease. The Journal of Thoracic and Cardiovascular Surgery. 157 (1), 329-340 (2019).
  6. Donald, J. S., et al. Ross operation in children: 23-year experience from a single institution. The Annals of thoracic surgery. 109 (4), 1251-1259 (2020).
  7. Khwaja, S., Nigro, J. J., Starnes, V. A. The Ross procedure is an ideal aortic valve replacement operation for the teen patient. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual. , 173-175 (2005).
  8. Elkins, R. C., Lane, M. M., McCue, C. Ross operation in children: late results. The Journal of Heart Valve Disease. 10 (6), 736-741 (2001).
  9. Chambers, J. C., Somerville, J., Stone, S., Ross, D. N. Pulmonary autograft procedure for aortic valve disease: long-term results of the pioneer series. Circulation. 96 (7), 2206-2214 (1997).
  10. Mazine, A., et al. Ross procedure in adults for cardiologists and cardiac surgeons: JACC state-of-the-art review. Journal of the American College of Cardiology. 72 (22), 2761-2777 (2018).
  11. Sengupta, P. The laboratory rat: Relating its age with humans. International Journal of Preventive Medicine. 4 (6), 624-630 (2013).
  12. Ashfaq, A., Leeds, H., Shen, I., Muralidaran, A. Reinforced ross operation and intermediate to long term follow up. Journal of Thoracic Disease. 12 (3), 1219-1223 (2020).
  13. Vida, V. L., et al. Age is a risk factor for maladaptive changes of the pulmonary root in rats exposed to increased pressure loading. Cardiovascular Pathology: The Official Journal of the Society for Cardiovascular Pathology. 21 (3), 199-205 (2012).
  14. Nappi, F., et al. An experimental model of the Ross operation: Development of resorbable reinforcements for pulmonary autografts. The Journal of Thoracic and Cardiovascular Surgery. 149 (4), 1134-1142 (2015).
  15. Vanderveken, E., et al. Mechano-biological adaptation of the pulmonary artery exposed to systemic conditions. Scientific Reports. 10 (1), 2724 (2020).

Play Video

Cite This Article
Dedja, A., Cattapan, C., Di Salvo, G., Avesani, M., Sabatino, J., Guariento, A., Vida, V. A Rodent Model of The Ross Operation: Syngeneic Pulmonary Artery Graft Implantation in A Systemic Position. J. Vis. Exp. (182), e63179, doi:10.3791/63179 (2022).

View Video