Summary

定量叶类节肢动物的方法

Published: October 20, 2019
doi:

Summary

我们描述了如何通过将叶子和树枝末端密封在袋中、剪切和冷冻袋状材料,以及将先前冻结的材料在水中进行除除节肢动物从基底中分离进行定量来量化叶栖动物。

Abstract

陆生节肢动物在我们的环境中扮演着重要的角色。以允许精确指数或密度估计的方式量化节肢动物需要一种具有高检测概率的方法和一个已知的采样区域。虽然大多数描述的方法提供了定性或半定量估计,足以描述物种的存在、丰富性和多样性,但很少提供足够一致的检测概率和已知或一致的采样区域,以提供具有足够精度的索引或估计,以检测环境、空间或时间变量之间的丰度差异。我们描述了如何通过将叶子和树枝末端密封在袋子中,剪切和冷冻袋状材料,以及将先前冻结的材料在水中进行除以,将节肢动物与基底分离并量化来量化。正如我们所演示的,这种方法可以在景观尺度上用足够的精度量化叶栖动物,以测试和描述空间、时间、环境和生态变量如何影响节肢动物的丰富性和丰度。这种方法使我们能够检测在东南落叶森林中常见的5个树系中叶栖动物的密度、丰富性和多样性的差异。

Introduction

陆生节肢动物在我们的生态系统中起着重要的作用。节肢动物除了具有科学意义外,对作物、园艺植物和天然植被既有害又有益,在食物网中具有重要的营养功能。因此,了解影响节肢动物社区发展和丰度的因素对于农民、害虫控制管理人员、植物生物学家、昆虫学家、野生动物生态学家和研究社区动态和养护生物学家至关重要。管理昆虫生物。了解影响节肢动物群落和富足的因素往往需要捕捉个体。捕获技术通常可以分为定性技术,仅检测物种的存在,以估计物种范围、丰富性和多样性,或半定量和定量技术,以便进行指数或估计分类组内个体的丰度和密度。

只允许推断存在物种或群落结构的定性技术具有未知或内在低检测概率,或缺乏对检测概率和采样面积大小的推断。由于这些技术的检测概率较低,因此与检测相关的可变性排除了推断解释变量如何影响节肢动物总体指标的足够精度。用于估计存在的定性技术包括吸液取样1、光陷阱2、出现陷阱3、根部喂养模式4、盐水管5、诱饵6、信息素3、陷阱7, 马莱塞陷阱8,窗口陷阱9,吸水阀10,殴打托盘11,蜘蛛网12,叶矿, fras13,节肢动物胆14,植被和根部损坏15.

或者,半定量和定量技术允许研究人员估计或至少一致地对指定的样本区域进行采样,并估计检测概率或假定检测概率是非定向的,足以不模糊了研究者探测丰度空间或时间变化的能力。半定量和定量技术包括扫描网16、吸力或真空取样17、系统计数可见节肢动物18、粘性陷阱19、各种锅式陷阱20、入口或紧急孔21个,化学击倒22个,粘和注水的颜色陷阱23个,和分支袋和剪24。

最近人为引起的气候变化和扰动机制导致植物群落发生急剧变化,使植物-社区物种组成和节肢动物群落之间的相互作用成为一个活跃的研究领域。了解节肢动物群落如何随植物物种组成而变化,是了解植物群落变化的潜在经济和环境影响的关键组成部分。需要半定量或定量的方法,以足够的精度量化节肢动物丰度,以检测植物物种之间的差异。在本文中,我们描述了一种索引叶栖动物的方法,该方法通过合理的努力,提供了足够的精度来识别常见于5个分类树的个体丰度和生物量、多样性和丰富性的差异。北美东南落叶林25。这种方法为估计丰度提供了足够的精度,从而可以推断由于人类改变的扰动机制而森林植物群落的物种组成如何影响节肢动物的组成,这有可能影响高营养性昆虫鸟类和哺乳动物的丰度和分布。更具体地说,通过使用Crossley等人24首先描述的改良袋装技术,我们估计了表面、叶栖节肢动物的密度,并测试了预测,即我们将检测多样性、丰富性和丰富的节肢动物在叶子的更快生长更多的树木的xeric物种相比,生长较慢的更美的物种。本文的目的是提供该技术的详细说明。

我们对伊利诺斯州南部的肖尼国家森林(SNF)进行了研究。SNF是一个115,738公顷的森林,位于奥扎克斯和肖尼山自然分区的中央硬木区26。森林包括37%的橡木/木柴、25%的混合高地硬木、16%的山毛木/枫树和10%的底层硬木。SNF主要是由第二生长橡树/胡桃在高地的Xeric地区和糖枫,美国山毛虫,和郁金香树(利里奥登龙郁金香)在庇护的美色山谷27,28。

此方法的站点选择将取决于研究的总体目标。例如,我们原始研究的主要目标是通过比较适应树群落和适应树群的叶栖节类动物群落指标,深入了解树群落的变化如何影响高营养生物。因此,我们的主要目标是量化节肢动物群落在位于半目或美体树群落内的个别树木上。我们在 ArcGIS 10.1.1 中选取了 22 个沿橡树/木耳(xeric)以山毛/木耳(木耳)为主的渐变,使用 USFS 支架覆盖图 (allveg2008.shp)。为了防止潜在的混杂效应,我们使用以下标准选择地点:不在河岸地区,约 12 公顷,位于毗连的高地-落叶林生境(即海拔超过 120 米)。所有场地都含有成熟的树木>50岁的丘陵地形,因此包括类似的斜坡和方面。虽然山毛木/木耳场地边界是根据树群的过渡来区分的,但使用SNF覆盖图和ArcGIS 10.1.1人为地确定了橡树/木耳场地边界。所有地点都是未冰川地形内的大型森林区块;它们在树种组成上的差异不是由于景观位置的差异,而是代表过去的土地使用(例如,明确的砍伐或选择性采伐)。我们将每个研究地点的离散多边形形状文件上传到手持式全球定位系统 (GPS) 并验证树种组成,从而对地图进行了地面验证。我们在每个站点随机选择采样点 (n = 5)。在2014年5月23日至6月25日,我们在每个点对三棵树进行采样,时间从0600-1400小时。为了找到样本树,我们从植被点向外搜索到30米半径,直到找到树枝足够低的成熟树(>20 cm d.b.h.)。通常,对代表五个属中的三个(宏基、卡利亚、法古斯、利里奥登德龙和Quercus)的三棵成熟树进行了抽样调查,它们最接近中心点。

Protocol

1. 在到现场之前构建采样装置 使用螺栓切割机、大型线切割器或电动磨削盘,拆下 30 厘米线番茄笼的底部 1/3,使其长度约为 55 厘米。 在番茄笼最大端的每一侧切割两个 50 厘米的支架,由铝或类似半刚性材料制成,用作附件杆和支架。在距末端 38 厘米处,使用桌面副杆或大型抓握工具(如通道锁)将支架弯曲至大约 30° 角。将两根连接杆的较长端连接到番茄笼的两侧,用拉链和?…

Representative Results

我们从323个构成5棵树组的树木中收集了626个样本。对于每计量的树枝节肢动物生物量的估算,标准误差为5个树群平均值的12%至18%(表1)。这种精度水平足以检测树群之间的变异和生物量与日期25的二次变化。这种技术在估计公会多样性时提供了更精确的方法,如节肢动物公会多样性(H’)的标准误差(表1)所证明的,其?…

Discussion

准确量化节肢动物群落的两个必要要求是相对较高的检测概率和已知或一致的采样区域。当对节肢动物进行取样时,检测概率低于100%可归因于单个节肢动物避免陷阱或一些在加工过程中未被发现的个体。拦截飞行节肢动物的拦截器(马莱塞/窗口陷阱、粘性陷阱等)似乎是在森林树冠29、30、31列举节肢动物群落最常用的方法?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢美国农业部林业局通过USFS协议13-CS-11090800-022为该项目提供资金。我们要感谢J.Suda,W.Holland和其他人的实验室援助,以及R.Richards的实地援助。

Materials

13 gallon garbage bags Glad 78374
Aluminum rod Grainger 48ku20
Pruner Bartlet arborist supply pp-125b-2stick
Telescoping pole BES TPF620
Tomato Cage Gilbert and Bennet 42 inch galvanized

References

  1. Arnold, A. J. Insect sampling without nets, bags, or filters. Crop Protection. 13, 73-76 (1994).
  2. Roberts, R. J., Campbell, A. J., Porter, M. R., Sawtell, N. L., Lee, K. E. Funturations in the abundance of pasture scarbs in relation to Eucalyptus trees. Proceeding of the 3rd Australian Conference on Grassland Invertebrate Ecology. , 75-79 (1982).
  3. Southwood, T. R. E., Henderson, P. A. . Ecological Methods. , (2000).
  4. Masters, G. J. Insect herbivory above- and belowground: individual and joint effect on plant fitness. Ecology. 79, 1281-1293 (1995).
  5. Stewart, R. M., Kozicki, K. R. DIY assessment of leatherjacket numbers in grassland. Proceedings of the crop protection in North Britain Conference. , 349-353 (1987).
  6. Ward, R. H., Keaster, A. J. Wireworm baiting: use of solar energy to enhance early detection of Melanotus depressus, M. verberans, and M. mellillus in Midwest cornfields. Journal of Economic Entomology. 70, 403-406 (1977).
  7. Barber, H. S. Traps for cave inhabiting insects. Journal of the Elisha Michell Scientific Society. 46, 259-266 (1931).
  8. Malaise, R. A new insect trap. Entomologisk Tidskrift. 58, 148-160 (1937).
  9. Peck, S. B., Davis, A. E. Collecting small beetles with large-area “window traps”. Coleopterists Bulletin. 34, 237-239 (1980).
  10. Taylor, L. R. An improved suction trap for insects. Annals of Applied Biology. 38, 582-591 (1951).
  11. White, T. C. R. A quantitative method of beating for sampling larvae of Selidosema suavis (Lepidoptera: Geometridae) in plantations in New Zealand. Canadian Entomologist. 107, 403-412 (1975).
  12. Ozanne, C. M., Leather, S. R. Techniques and methods for sampling canopy insects. Insect Sampling in Forest Ecosystems. , 146-167 (2005).
  13. Sterling, P. H., Hambler, C., Kirby, K., Wright, F. J. Coppicing for conservation: do hazel communities benefit?. Woodland conservation and research in the Clay Veil of Oxfordshire and Buckinghamshire. , 69-80 (1988).
  14. Fidgen, J. G., Teerling, C. R., McKinnon, M. L. Intra- and inter-crown distribution of eastern spruce gall adelgid, Adelges abietis (L.), on young white spruce. Canadian Entomologist. 126, 1105-1110 (1994).
  15. Prueitt, S. C., Ross, D. W. Effect of environment and host genetics on Eucosma sonomana (Lepidopter; Tortricidae) infestation levels. Environmental Entomology. 27, 1469-1472 (1998).
  16. Gray, H., Treloar, A. On the enumeration of insect populations by the method of net collection. Ecology. 14, 356-367 (1933).
  17. Dietrick, E. J. An improved backpack motor fan for suction sampling of insect populations. Journal of Economic Entomology. 54, 394-395 (1961).
  18. Speight, M. R. Reproductive capacity of the horse chestnut scale insect, Pulvinaria regalis Canard (Hom., Coccidae). Journal of Applied Entomology. 118, 59-67 (1994).
  19. Webb, R. E., White, G. B., Thorpe, K. W. Response of gypsy moth (Lepidoptera: Lymantriidae) larvae to sticky barrier bands on simulated trees. Proceeding of the Entomological Society of Washington. 97, 695-700 (1995).
  20. Agassiz, D., Gradwell, G. A trap for wingless moths. Proceedings and Transactions of the British Entomological and Natural History Society. 10, 69-70 (1977).
  21. Lozano, C., Kidd, N. A. C., Jervis, M. A., Campos, M. Effects of parasitoid spatial hererogeneity, sex ratio and mutual interaction between the olive bark beetle Phloeotribus scarabaeoides (Col. Scolytidae) and the pteromalid parasitoid Cheiropachus quardrum (Hum. Pteromalidae). Journal of Applied Entomology. 121, 521-528 (1997).
  22. Roberts, H. R. Arboreal Orthoptera in the rain forest of Costa Rica collected with insecticide: a report on grasshoppers (Acrididae) including new species. Proceedings of the Academy of Natural Sciences, Philadelphia. 125, 46-66 (1973).
  23. Disney, R. H. L., et al. Collecting methods and the adequacy of attempted fauna surveys, with reference to the Diptera. Field Studies. 5, 607-621 (1982).
  24. Crossley, D. A., Callahan, J. T., Gist, C. S., Maudsley, J. R., Waide, J. B. Compartmentalization of arthropod communities in forest canopies at Coweeta. Journal of the Georgia Entomological Society. 11, 44-49 (1976).
  25. Sierzega, K. P., Eichholz, M. W. Understanding the potential biological impacts of modifying disturbance regimes in deciduous forests. Oecologia. 189, 267-277 (2019).
  26. Schwegman, J., Mohlenbrock, R. H. The natural divisions of Illinois. Guide to the vascular flora of Illinois. , 1-47 (1975).
  27. Fralish, J. S., McArdle, T. G. Forest dynamics across three century-length disturbance regimes in the Illinois Ozark hills. American Midland Naturalist. 162, 418-449 (2009).
  28. Thompson, F. R. The Hoosier-Shawnee Ecological Assessment. General Technical Report. NC-244. , (2004).
  29. Townes, H. A light-weight Malaise trap. Entomological News. 83, 239-247 (1972).
  30. Wilkening, J., Foltz, J. L., Atkonson, T. H., Connor, M. D. An omnidirectional flight trap for ascending and descending insects. Canadian Entomologist. 113, 453-455 (1981).
  31. Basset, Y. A composite interception trap for sampling arthropods in tree canopies. Australian Journal of Entomology. 27, 213-219 (1988).
  32. Bowden, J. An analysis of factors affecting catches of insects in light traps. Bulletin of Entomological Research. 72, 535-556 (1982).
  33. Müller, J., et al. Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. Forest Ecology and Management. 312, 129-137 (2014).
  34. Southwood, T. R. E., Mound, L. A., Waloff, N. The components of diversity. Diversity of Insect Faunas. , 19-40 (1978).
  35. Southwood, T. R. E., Moran, V. C., Kennedy, C. E. J. The assessment of arboreal insect fauna-comparisons of knockdown sampling and faunal lists. Ecological Entomology. 7, 331-340 (1982).
  36. Majer, J. D., Recher, H. F. Invertebrate communities on Western Australian eucalypts: a comparison of branch clipping and chemical knockdown. Australian Journal of Ecology. 13, 269-278 (1988).
  37. Basset, Y. The arboreal fauna of the rainforest tree Argyrodendron actinophyllum as sampled with restricted canopy fogging: composition of the fauna. Entomologist. 109, 173-183 (1990).
  38. Majer, J. D., Recher, H., Keals, N. Branchlet shaking: a method for sampling tree canopy arthropods under windy conditions. Australian Journal of Ecology. 21, 229-234 (1996).
  39. Moir, M. L., Brennan, K. E. C., Majer, J. D., Fletcher, M. J., Koch, J. M. Toward an optimal sampling protocol for Hemiptera on understorey plants. Journal of Insect Conservation. 9, 3-20 (2005).
  40. Johnson, M. D. Evaluation of arthropod sampling technique for measuring food availability for forest insectivorous birds. Journal of Field Ornithology. 71, 88-109 (2000).
  41. Cooper, R. J., Whitmore, R. C. Arthropod sampling methods in ornithology. Studies in Avian Biology. 13, 29-37 (1990).
  42. Cooper, N. W., Thomas, M. A., Garfinkel, M. B., Schneider, K. L., Marra, P. P. Comparing the precision, accuracy, and efficiency of branch clipping and sweep netting for sampling arthropods in two Jamaican forest types. Journal of Field Ornithology. 83, 381-390 (2012).
  43. Schowalter, T. D., Webb, J. W., Crossley, D. A. Community structure and nutrient content of canopy arthropod in clearcut and uncut forest ecosystems. Ecology. 62, 1010-1019 (1981).
  44. Majer, J. D., Recher, H. F., Perriman, W. S., Achuthan, N. Spatial variation of invertebrate abundance within the canopies of two Australian eucalypt forests. Studies in Avian Biology. 13, 65-72 (1990).
  45. Beltran, W., Wunderle, J. M. Temporal dynamics of arthropods on six tree species in dry woodlands on the Caribbean Island of Puerto Rico. Journal of Insect Science. 14, 1-14 (2014).
  46. Schowalter, T. D., Crossley, D. A., Hargrove, W. Herbivory in forest ecosystems. Annual Review of Entomology. 31, 177-196 (1986).
  47. Summerville, K. S., Crist, T. O. Effects of timber harvest on Lepidoptera: community, guild, and species responses. Ecological Applications. 12, 820-835 (2002).
  48. Barbosa, P., et al. Associational resistance and associational susceptibility: having right or wrong neighbors. Annual Review of Ecology, Evolution, and Systematics. 40, 1-20 (2009).
  49. Burns, R. M., Honkala, B. H. Silvics of North America: Vol 2. Hardwoods. Agriculture Handbook 654. , (1990).

Play Video

Cite This Article
Eichholz, M. W., Sierzega, K. P. A Method for Quantifying Foliage-Dwelling Arthropods. J. Vis. Exp. (152), e60110, doi:10.3791/60110 (2019).

View Video