Summary

成人小鼠心脏干细胞的分离、鉴定及分化

Published: January 07, 2019
doi:

Summary

本文的总体目标是规范心脏干细胞 (csc) 与成年小鼠心脏分离、表征和分化的协议。在这里, 我们描述了一种密度梯度离心方法, 以分离小鼠 csc 和详细的方法, csc 培养, 增殖, 并分化为心肌细胞。

Abstract

心肌梗塞 (mi) 是全球发病率和死亡率的主要原因。再生医学的一个主要目标是补充心肌梗死后的死亡心肌。虽然有几种策略已被用于再生心肌, 干细胞治疗仍然是补充心肌梗死心脏的死亡心肌的主要方法。越来越多的证据表明, 成人心脏中存在常驻心脏干细胞 (csc), 其内分泌和 (或旁分泌) 对心脏再生有影响。然而, csc 分离及其对心肌细胞, 特别是心肌细胞的表征和分化, 仍然是一个技术挑战。在本研究中, 我们提供了一个简单的方法, 分离, 表征和分化 csc 从成年小鼠心脏。在这里, 我们描述了一种密度梯度方法隔离 csc, 其中心脏被消化0.2% 胶原酶 ii 溶液。为了表征分离的 csc, 我们评估了 cscs1、nkx2-5 和 gat4 和多能/干细胞的表达。我们还通过在培养培养培养皿和评估扩散标记 ki-67 的表达来确定孤立的 csc 的增殖潜力。为了评估 csc 的分化潜力, 我们选择了七到十天培养的 csc。我们把它们转移到一个有心肌细胞分化培养基的新盘子里。它们在细胞培养孵化器中孵育 12天, 而分化培养基每三天改变一次。分化的 csc 表达心肌细胞特异性标记: 放线素和肌钙蛋白 i。因此, 使用该协议分离的 csc 具有干细胞和心脏标记物, 它们有向心肌细胞谱系增殖和分化的潜力。

Introduction

缺血性心脏病, 包括心肌梗死 (mi), 是全世界死亡的主要原因1。干细胞治疗再生死亡心肌仍然是改善心肌梗死心脏 2,3,4, 5 的主要途径。不同类型的干细胞被用来补充死亡心肌和改善心肌梗死的心功能。它们大致可分为胚胎干细胞6和成人干细胞.在成人干细胞中, 使用了各种类型的干细胞, 如骨髓源的单个核细胞7,8, 骨髓间充质干细胞 9,10, 脂肪组织1112和脐带13和 csc1415。干细胞可以通过内分泌和/或辅助作用促进心脏再生16,17,18, 19,20.然而, 干细胞治疗的一个主要局限性是获得足够数量的干细胞, 这些干细胞能够增殖和/或分化到特定的心脏谱系21,22。干细胞自体同种异体移植是干细胞治疗中一个重要挑战。csc 可能是心脏再生的更好方法, 因为它们来自心脏, 它们比非心脏干细胞更容易分化为心脏谱系。因此, 它降低了畸胎瘤的风险。此外, csc 的内分泌和副分泌效应, 如来自 csc 的外显子和 mirna, 可能比其他类型的干细胞更有效。因此, csc 仍然是心脏再生23,24 的更好选择。

尽管 csc 由于其心脏源, 是心肌心脏再生的较好候选, 但 csc 的一个主要限制是由于缺乏有效的隔离方法而导致的产量较低。另一个限制因素可能是 csc 向心肌细胞谱系 2252627 的分化受损。为了避免这些限制, 重要的是要为 csc 的分离、表征和向心脏谱系的分化制定一个有效的协议。csc 没有单一的可接受标记, 基于细胞表面标记的 csc 隔离可产生较少的 csc。在这里, 我们标准化了一种简单的梯度离心方法, 将 csc 从鼠标心脏中分离出来, 该方法具有成本效益, 并提高了 csc 的产量。这些孤立的 csc 可以选择特定的细胞表面标记通过荧光激活细胞短路。除了 csc 分离外, 我们还提供了 csc 培养、表征和向心肌细胞谱系分化的协议。因此, 我们提出了一种很好的方法来隔离、表征、培养和区分 csc 和成人鼠标心脏 (图 5)。

Protocol

小鼠的住房、麻醉和牺牲是按照内布拉斯加州大学医学中心批准的 iacuc 协议进行的。 1. 材料 使用在机构动物设施内部饲养的10至12周的 c57bl/6j 黑雄性小鼠, 对 csc 进行隔离, 还可以从非怀孕的雌性小鼠中分离。 消毒所有必要的手术器械, 包括手术剪刀, 精细的手术剪刀, 弯曲的小腿钳, 和手术刀片, 通过高压灭菌他们之前, 鼠标安乐死的小鼠。 在灭菌条件?…

Representative Results

在本研究中, 我们分离 csc 从10至12周的 c57bl/6j 雄性小鼠心脏。在这里, 我们提出了一个简单的方法, csc 隔离和表征使用标记的多能性。我们还提出了一个优雅的方法 csc 分化和描述的 csc 分化为心肌细胞谱系。我们在相对照显微镜下观察到2至3天培养的 csc 的纺锤形形态 (图 1 a 和1 b)。我们发现在维持培养基中培养7天的时候, csc 的形态发生?…

Discussion

此 csc 隔离协议的关键步骤如下所示。1) 从小鼠身上提取心脏时, 必须保持灭菌状态。心脏提取过程中的任何污染都可能损害 csc 的质量. 2) 在切碎心脏之前, 必须完全切除血液, 这是通过用 hbss 溶液对整个心脏和心脏碎片进行几次清洗来完成的。3) 心脏碎片必须完全裂解成单细胞悬浮液与胶原酶溶液。4) 用于分离细胞的多蔗糖和二甲酸钠梯度溶液必须预热。5) csc 培养的介质必须预热。6) 在培养皿中…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生研究院向 paras kumar mishra 提供的 hl-113281 和 hl116205 赠款的部分支持。

Materials

Mice The Jackson laboratory, USA Stock no. 000664
Antibodies:
OCT4- Abcam ab18976 (rabbit polyclonal) OCT4-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
SOX2 Abcam ab97959 (rabbit polyclonal) SOX2-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
Nanog Abcam ab80892 (rabbit polyclonal) Nanog-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
Ki67 Abcam ab16667 (rabbit polyclonal) Ki67-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
Sca I Millipore AB4336 (rabbit polyclonal) Sca I Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
NKX2-5 Santa Cruz sc-8697 (goat polyclonal) NKX2-5-Primary antibody- 1:50 dilution, Secondar antibody- 1:200 dilution, in blocking solution
GATA4 Abcam ab84593 (rabbit polyclonal) GATA4-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
MEF2C Santa Cruz sc-13268 (goat polyclonal) MEF2C-Primary antibody- 1:50 dilution, Secondar antibody- 1:200 dilution, in blocking solution
Troponin I Millipore MAB1691 (mouse monoclonal) Troponin I-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
Actinin Millipore MAB1682 (mouse monoclonal) Actinin-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
ANP Millipore AB5490 (mouse polyclonal) ANP-Primary antibody- 1:100 dilution, Secondar antibody- 1:200 dilution, in blocking solution
Alex Fluor-488 checken anti-rabbit Life technology Ref no. A21441
Alex Fluor-594 goat anti-rabbit Life technology Ref no. A11012
Alex Fluor-594 rabbit anti-goat Life technology Ref no. A11078
Alex Fluor-488 checken anti-mouse Life technology Ref no. A21200
Alex Fluor-594 checken anti-goat Life technology Ref no. A21468
Name Company Catalog Number Comments
Culture medium:
CSC maintenance medium Millipore SCM101 Note: For CSC culture, PBS or incomplete DMEM medium was used for washing the cells
cardiomyocytes differentiation medium Millipore SCM102
DMEM Sigma-Aldrich D5546
Name Company Catalog Number Comments
Cell Isolation buffer:
polysucrose and sodium diatrizoate solution (Histopaque1077) Sigma 10771
HBSS Gibco 2018-03
Collagenase I Sigma C0130
Dispase solution STEMCELL Technologies 7913
PBS LONZA S1226
StemPro Accutase Cell Dissociation Reagent Thermoscientific A1110501
Other reagents:
BSA Sigma A7030
Normal checken serum Vector laboratory S3000
DAPI solution Applichem A100,0010 Dapi, working concentration-1 µg/mL
Trypan blue Biorad 145-0013
Trypsin Sigma T4049
StemPro Accutase Cell Dissociation Reagent Thermo Fisher Scientific A1110501
Formaldehyde Sigma 158127
Triton X-100 ACROS Cas No. 900-293-1
Tween 20 Fisher Sceintific Lot No. 160170
Ethanol Thermo Scientific
Name Company Catalog Number Comments
Tissue culture materials:
100 mm petri dish Thermo Scientific
6-well plate Thermo Scientific
24-well plate Thermo Scientific
T-25 flask Thermo Scientific
T-75 flask Thermo Scientific
15 ml conical tube Thermo Scientific
50 mL conical tube Thermo Scientific
40 µm cell stainer Fisher Scientific 22363547
100 µm cell stainer Fisher Scientific 22363549
0.22 µm filter Fisher Scientific 09-719C
10 mL syring BD Ref no. 309604
10 µL, 200 µL, 1000 µL pipette tips Fisher Scientific
5 mL, 10mL, 25 mL disposible plastic pipette Thermo Scientific
Name Company Catalog Number Comments
Instruments
Centrufuge machine Thermo Scientific LEGEND X1R centrifuge
EVOS microscope Life technology
Automated cell counter Biorad
Cell counting slide Biorad 145-0011
Pippte aid Thermo Scientific S1 pipet filler
Name Company Catalog Number Comments
Surgical Instruments:
Surgical scissors Fine Scientific Tool
Fine surgical scissors Fine Scientific Tool
Curve shank forceps Fine Scientific Tool
Surgical blade Fine Scientific Tool

References

  1. Benjamin, E. J., et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 135, e146 (2017).
  2. Nguyen, P. K., Rhee, J. W., Wu, J. C. Adult Stem Cell Therapy and Heart Failure, 2000 to 2016: A Systematic Review. The Journal of the American Medical Association Cardiology. 1, 831-841 (2000).
  3. Emmert, M. Y., et al. Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunction – From cardioprotection to functional repair in a translational pig infarction model. Biomaterials. 122, 48-62 (2017).
  4. Silvestre, J. S., Menasche, P. The Evolution of the Stem Cell Theory for Heart Failure. EBioMedicine. 2, 1871-1879 (2015).
  5. Terzic, A., Behfar, A. Stem cell therapy for heart failure: Ensuring regenerative proficiency. Trends in Cardiovascular Medicine. 26, 395-404 (2016).
  6. Yamada, S., et al. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells. 26, 2644-2653 (2008).
  7. Sadek, H. A., Martin, C. M., Latif, S. S., Garry, M. G., Garry, D. J. Bone-marrow-derived side population cells for myocardial regeneration. Journal of Cardiovascular Translational Research. 2, 173-181 (2009).
  8. Vrtovec, B., et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circulation Research. 112, 165-173 (2013).
  9. Hare, J. M., et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. The Journal of American Medical Association. 308, 2369-2379 (2012).
  10. Guijarro, D., et al. Intramyocardial transplantation of mesenchymal stromal cells for chonic myocardial ischemia and impaired left ventricular function: Results of the MESAMI 1 pilot trial. International Journal of Cardiology. 209, 258-265 (2016).
  11. Bobi, J., et al. Intracoronary Administration of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction. Journal of the American Heart Association. 6, (2017).
  12. Suzuki, E., Fujita, D., Takahashi, M., Oba, S., Nishimatsu, H. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World Journal of Cardiology. 7, 454-465 (2015).
  13. Gao, L. R., et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Medicine. 13, 162 (2015).
  14. Simpson, D. L., et al. A strong regenerative ability of cardiac stem cells derived from neonatal hearts. Circulation. , S46-S53 (2012).
  15. Kazakov, A., et al. C-kit(+) resident cardiac stem cells improve left ventricular fibrosis in pressure overload. Stem Cell Research. 15, 700-711 (2015).
  16. Ong, S. G., et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation. 130, S60-S69 (2014).
  17. Sahoo, S., Losordo, D. W. Exosomes and cardiac repair after myocardial infarction. Circulation Research. 114, 333-344 (2014).
  18. Zhang, Z., et al. Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair. Journal of the American Heart Association. 5, (2016).
  19. Ibrahim, A. G., Cheng, K., Marban, E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports. 2, 606-619 (2014).
  20. Emanueli, C., Shearn, A. I., Angelini, G. D., Sahoo, S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology. 71, 24-30 (2015).
  21. Menasche, P. Cardiac cell therapy: lessons from clinical trials. Journal of Molecular and Cellular Cardiology. 50, 258-265 (2011).
  22. Trounson, A., McDonald, C. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell. 17, 11-22 (2015).
  23. Takamiya, M., Haider, K. H., Ashaf, M. Identification and characterization of a novel multipotent sub-population of Sca-1(+) cardiac progenitor cells for myocardial regeneration. PLoS One. 6, e25265 (2011).
  24. Cambria, E., et al. Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regenerative Medicine. 2, 17 (2017).
  25. Bruyneel, A. A., Sehgal, A., Malandraki-Miller, S., Carr, C. Stem Cell Therapy for the Heart: Blind Alley or Magic Bullet?. Journal of Cardiovascular Translational Research. 9, 405-418 (2016).
  26. Garbern, J. C., Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 12, 689-698 (2013).
  27. Oh, H., Ito, H., Sano, S. Challenges to success in heart failure: Cardiac cell therapies in patients with heart diseases. Journal of Cardiology. 68, 361-367 (2016).
  28. Smith, A. J., et al. Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. Nature Protocols. 9, 1662-1681 (2014).
  29. Rutering, J., et al. Improved Method for Isolation of Neonatal Rat Cardiomyocytes with Increased Yield of C-Kit+ Cardiac Progenitor Cells. Journal of Stem Cell Research and Therapy. 5, 1-8 (2015).
  30. Saravanakumar, M., Devaraj, H. Distribution and homing pattern of c-kit+ Sca-1+ CXCR4+ resident cardiac stem cells in neonatal, postnatal, and adult mouse heart. Cardiovascular Pathology. 22, 257-263 (2013).
  31. Monsanto, M. M., et al. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circulation Research. 121, 113-124 (2017).
  32. Vidyasekar, P., Shyamsunder, P., Santhakumar, R., Arun, R., Verma, R. S. A simplified protocol for the isolation and culture of cardiomyocytes and progenitor cells from neonatal mouse ventricles. European Journal of Cell Biology. 94, 444-452 (2015).
  33. Dergilev, K. V., et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 49, 64-71 (2017).
  34. Zaruba, M. M., Soonpaa, M., Reuter, S., Field, L. J. Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation. 121, 1992-2000 (1992).
  35. Wang, H., et al. Isolation and characterization of a Sca-1+/CD31- progenitor cell lineage derived from mouse heart tissue. BMC Biotechnology. 14, 75 (2014).
  36. Smits, A. M., et al. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols. 4, 232-243 (2009).

Play Video

Cite This Article
Yadav, S. K., Mishra, P. K. Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. J. Vis. Exp. (143), e58448, doi:10.3791/58448 (2019).

View Video