Summary

本机配合物的净化对结构研究使用串联亲和标签法

Published: July 27, 2016
doi:

Summary

The Tandem Affinity Purification (TAP) method has been used extensively to isolate native complexes from cellular extract, primarily eukaryotic, for proteomics. Here, we present a TAP method protocol optimized for purification of native complexes for structural studies.

Abstract

亲和纯化的方法已经成功地分离出原生复合蛋白质组学表征。结构的异质性和一定程度的复杂的成分异质性通常不妨碍进行这种研究的进展。与此相反,用于结构表征的复合应是既在组成和结构上均匀的,以及在比所需的蛋白质组学更高浓度的状态下进行纯化。最近,一直在电子显微镜的应用的大型大分子复合物结构的决心显著的进步。这加剧了利益的方法通过电子显微镜净化足够数量和质量结构测定天然复合物。串联亲和纯化(TAP)的方法进行了优化,提取和纯化的18亚基,从〜芽殖酵母0.8丙二醛核蛋白组件( 酿酒酵母) </EM>适用于负染色和电子显微镜低温。这里有详细的TAP方法,做出这些改变的理由所作的修改,以及采取的方法测定的在组成和结构均匀复杂。

Introduction

许多主要的细胞过程是由大的蛋白质和蛋白质-RNA复合物1进行。一个显著瓶颈进行这种复合物的生物物理和结构研究是获得并在适当浓度的合适的质量( ,均匀性)它们。从天然来源隔离一个复杂的具有许多优点,包括护亚单位的相关转录后和/或翻译后修饰和投保适当的复杂的装配。然而,大蜂窝络合物以低拷贝数通常存在于细胞和纯化必须高效和近生理条件下发生,以确保复杂的完整性。来自真核来源纯化络合物是特别具有挑战性的,并且可以在经济上令人望而却步。因此,是有效率和产生均匀复杂的策略或方法是高度期望的。

这种策略已经成功地从净化真核细胞的天然复合物为他们的初步定性是串联亲和纯化(TAP)的方法2,3。该方法TAP最初设计在复杂的纯化由芽殖酵母( 酿酒酵母)天然蛋白与之交互因子(S)2。该方法TAP利用了两个标签,串联融合到同一个蛋白质编码基因序列的每个标签。被选择的代码,以便平衡需要紧和选择性结合的亲和树脂,以保持接近生理溶液条件的愿望。这种平衡的作用是保持与净化后的特征相互作用的因子(S)标签蛋白的稳定的相互作用(S)。的基因组引入的TAP标记被放置在末端(C-末端)的蛋白质编码基因的和由一个序列编码的钙调蛋白结合肽(CBP),随后通过蛋白A的 – 加成刚刚超过20千道尔顿到标签蛋白。 CBP短,26个氨基酸,并通过识别的〜17 kDa蛋白钙调素在钙的存在下用K 的D 10 -9量级M 4上。蛋白A标记是较大,由58残两个重复与重复之间的短连接体。每58个氨基酸重复由免疫球蛋白G(IgG)的用K D〜10 -8 M 5识别。这两个标记之间成立的TEV蛋白酶,从烟草蚀纹病毒6,7内肽酶的识别位点。 如图1所示,在TAP标记蛋白的方法的第1亲和性步骤经由蛋白A的标记的蛋白质是由在加入TEV蛋白酶,位点特异性之间切割的洗脱上柱裂解绑定至IgG树脂这两个标签。这是一个必要的步骤为IgG的互动和蛋白A是非常强的,只能解变性的条件下得到充分的扰动。由于缺乏公关otein一个标记,该蛋白质结合到CaM的树脂在钙的存在下,并从该树脂与另外的金属离子螯合剂EGTA(乙二醇四乙酸)( 图1)的洗脱。

引进TAP方法,它在一个大规模研究用于生成不久后,“地图”在S.复杂的相互作用酵母 8。重要的是,作为这种努力的整个酵母-TAP标记开放阅读框(ORF)库的结果,以及个别的TAP标记的ORF 9是可从商业来源。因此,可以得到具有为任何酵母复杂的标签化蛋白质的任何酵母菌株。在TAP方法还刺激了修改或在TAP标记的变体,其中包括:其用于从其它真核以及细菌细胞10,11配合物的纯化使用;一个“拆分标签”,其中蛋白质A和CBP被放置在不同的蛋白质12的设计;和TAGS改变,以便容纳研究者的需要,如复合物 Ca 2+或EGTA 13的灵敏度。

在这两个仪器和方法学的最新进展已经导致了结构确定在电子显微镜(EM)的应用显著的进步,已导致高,接近大分子复合14的原子分辨率的图像。通过获得EM复杂的分辨率,但是,仍然在研究中的复杂的质量而定。这项研究利用了TAP标签的方式从S.净化酵母 U1的核蛋白,18亚基(〜0.8 MDA)低拷贝数核糖核蛋白复合物,是剪接体15,16的一部分。一些已采取步骤以纯化这种复合物,例如,它是均匀的和适当的浓度。在纯化的各阶段中遇到的潜在问题被描述,并采取克服CHALL策略恩格斯强调。通过仔细评估和净化优化步骤中,U1核蛋白纯化是适用于负染色和电子显微镜冷冻(冷冻电镜)研究数量质量和。用于结构研究天然复合物的纯化的优化TAP方法协议在本文中描述。

Protocol

注意:下面的协议被设计为一个复杂的纯化从4升细胞培养物,细胞的大约40克湿重。一旦制备,所有缓冲区应储存在4℃并且在一个月它们的制备中使用。还原剂和蛋白酶抑制剂仅加入缓冲液在使用前。 1.全细胞提取的制备串联亲和纯化 S.生长酵母细胞 连胜所需的TAP标记S.酵母菌株从存储器(-80°C)到酵母蛋白胨葡萄糖(YPD)板。孵育3 – 5天(3…

Representative Results

使用了改良的方法TAP从S.净化酵母 U1的核蛋白,18亚基核糖核蛋白复合体。公布的协议2,3以下复杂的初始的TAP纯化,得到一个复合物,出现异类,迁移作为银三个频带染色天然聚丙烯酰胺凝胶( 图2A)。在TAP方法的优化的多轮,产生了迁移,主要是一个单波段上指示更均匀组件( 图2A)的天然凝胶的配合物。用荧光染料染色为…

Discussion

该TAP方法利用两个标签来平衡需要严格和选择性的结合到亲和树脂保持接近生理溶液条件的愿望。这种平衡的作用是保持与净化后的特征相互作用的因子(S)标签蛋白的稳定的相互作用(S)。此外,个别的TAP标记的ORFs可从商业来源,这样就可以得到具有为任何酵母复杂的标签化蛋白质的任何酵母菌株。保留的复合物的完整性和资源,以测试在用于纯化的复杂使用不同标记的蛋白质亚基的可用性?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors are grateful for the support and advice of Nikolaus Grigorieff. We thank Anna Loveland, Axel Brilot, Chen Xu, and Mike Rigney for helpful discussions and EM guidance. This work was funded by the National Science Foundation, Award No. 1157892. The Brandeis EM facility is supported by National Institutes of Health grant P01 GM62580.

Materials

S. cerevisiae TAP tagged strain Open Biosystems YSC1177 This is the primary yeast strain used to develop the TAP protocol. Its background is S288C: ATCC 201388: MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, SNU71::TAP::HIS3MX6
Coffee grinder Mr. Coffee IDS77 Used for cell lysis
Hemocytometer, Bright Line Hausser Scientific 3120 Used to assess cell lysis
JA 9.100 centrifuge rotor  Beckman Coulter, Inc. Used to harvest the yeast cells
JA 20 fixed-angle centrifuge rotor Beckman Coulter, Inc. Used to clear the cell extract of non-soluble cellular material
Ti 60 fixed-angle centrifuge rotor Beckman Coulter, Inc. Used to further clear the soluble cell extract
Thermomixer Eppendorf R5355 Temperature controlled shaker
Novex gel system Thermo Fisher Scientific 
IgG resin GE Healthcare 17-0969-01 Sepharose 6 fast flow
Calmodulin resin Agilent Technologies, Inc. 214303 Affinity resin
Protease inhibitor cocktail, mini tablets Sigma Aldrich 589297 Mini cOmplete ultra EDTA-free tablets
Protease inhibitor cocktail, large tablets Sigma Aldrich 5892953 cOmplete ultra EDTA-free tablets
Phenylmethanesulfonyl fluoride (PMSF) Dissolved in isopropanol
2 mL Bio-spin column Bio-Rad Laboratories, Inc. 7326008 Used to pack and wash the Calmodulin resin
10 mL poly-prep column Bio-Rad Laboratories, Inc. 7311550 Used to pack and wash the IgG resin
Precast native PAGE Bis-Tris gels Life Technologies BN1002 Novex NativePAGE Bis-Tris 4-16% precast polyacrylamide gels
NativeMark protein standard Thermo Fisher Scientific LC0725 Unstained protein standard used for native PAGE. Load 7.5 μL for a silver stained gel and 5 μL for a SYPRO Ruby stained gel
Precast SDS PAGE Bis-Tris gels Life Technologies NP0321 Novex Nu-PAGE Bis-Tris 4-12% precast polyacrylamide gels 
PageRuler protein standard Thermo Fisher Scientific 26614 Unstained protein standard used for Western blotting
SDS running buffer Life Technologies NP0001 1x NuPAGE MOPS SDS Buffer
TAP antibody Thermo Fisher Scientific CAB1001 Primary antibody against CBP tag
Secondary antibody Thermo Fisher Scientific 31341 Goat anti-rabbit alkaline phosphatase conjugated
BCIP/NBT Thermo Fisher Scientific 34042 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium 
Dialaysis units Thermo Fisher Scientific 88401 Slide-A-Lyzer mini dialysis units
Centrifugal filter units, 100kDa MWCO EMD Millipore UFC5100008 Amicon Ultra-0.5 Centrifugal Filter Unit with Ultracel-100 membrane
Detergent absorbing beads Bio-Rad Laboratories, Inc. 1523920 Bio-bead SM-2 absorbants
SYBR Green II Thermo Fisher Scientific S-7564 Flourescent dye for nucleic acid staining, when detecting with SYPRO Ruby present, use excitation wavelength of 488 nm and emission wavelength of 532 nm
SYPRO Ruby Molecular Probes S-12000 Flourescent dye for protein staining, when detecting with SYBR Green II present, use excitation wavelength of 457 nm and emission wavelength of 670 nm
Copper grids Electron Microscopy Sciences G400-CP

References

  1. Gavin, A. C., et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 415 (6868), 141-147 (2002).
  2. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., Seraphin, B. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology. 17 (10), 1030-1032 (1999).
  3. Puig, O., et al. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods. 24 (3), 218-229 (2001).
  4. Vaillancourt, P., Zheng, C. F., Hoang, D. Q., Breister, L. Affinity purification of recombinant proteins fused to calmodulin or to calmodulin-binding peptides. Methods Enzymol. 326, 340-362 (2000).
  5. Braisted, A. C., Wells, J. A. Minimizing a binding domain from protein A. Proc Natl Acad Sci U S A. 93 (12), 5688-5692 (1996).
  6. Kapust, R. B., et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 14 (12), 993-1000 (2001).
  7. Nallamsetty, S., et al. Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr Purif. 38 (1), 108-115 (2004).
  8. Ghaemmaghami, S., et al. Global analysis of protein expression in yeast. Nature. 425 (6959), 737-741 (2003).
  9. Howson, R., et al. Construction, verification and experimental use of two epitope-tagged collections of budding yeast strains. Comp Funct Genomics. 6 (1-2), 2-16 (2005).
  10. Cox, D. M., Du, M., Guo, X., Siu, K. W., McDermott, J. C. Tandem affinity purification of protein complexes from mammalian cells. Biotechniques. 33 (2), 267-268 (2002).
  11. Gully, D., Moinier, D., Loiseau, L., Bouveret, E. New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification. FEBS Lett. 548 (1-3), 90-96 (2003).
  12. Tharun, S. Purification and analysis of the decapping activator Lsm1p-7p-Pat1p complex from yeast. Methods Enzymol. 448, 41-55 (2008).
  13. Xu, X., Song, Y., Li, Y., Chang, J., Zhang, H., An, L. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr Purif. 72 (2), 149-156 (2010).
  14. Cheng, Y., Grigorieff, N., Penczek, P. A., Walz, T. A Primer to Single-Particle Cryo-Electron Microscopy. Cell. 161 (3), 438-449 (2015).
  15. Gottschalk, A., et al. A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. RNA. 4 (4), 374-393 (1998).
  16. Neubauer, G., Gottschalk, A., Fabrizio, P., Seraphin, B., Luhrmann, R., Mann, M. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc Natl Acad Sci U S A. 94 (2), 385-390 (1997).
  17. Lucast, L. J., Batey, R. T., Doudna, J. A. Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques. 30 (3), 544-546 (2001).

Play Video

Cite This Article
van der Feltz, C., Pomeranz Krummel, D. Purification of Native Complexes for Structural Study Using a Tandem Affinity Tag Method. J. Vis. Exp. (113), e54389, doi:10.3791/54389 (2016).

View Video