Summary

Sonicazione-facilitato immunofluorescenza colorazione di ritardo-fase embrionale e larvale<em> Drosophila</em> Tessuti<em> In Situ</em

Published: August 14, 2014
doi:

Summary

Immunostaining is an effective technique for visualizing specific cell types and proteins within tissues. By utilizing sonication, the protocol described here alleviates the need to dissect Drosophila melanogaster tissues from late-stage embryos and larvae before immunostaining. We provide an efficient methodology for the immunostaining of formaldehyde-fixed whole mount larvae.

Abstract

Gli studi condotti in Drosophila melanogaster embrioni e larve forniscono informazioni cruciali nei processi di sviluppo, come specifica il destino delle cellule e organogenesi. Immunocolorazione permette la visualizzazione di sviluppare tessuti e organi. Tuttavia, una cuticola protettiva che si forma al termine della embriogenesi impedisce permeazione di anticorpi in embrioni in fase avanzata e larve. Mentre dissezione prima della colorazione viene regolarmente utilizzato per analizzare i tessuti di Drosophila larvali, si rivela inefficiente per alcune analisi, perché i piccoli tessuti possono essere difficili da individuare e isolare. Sonicazione fornisce un'alternativa alla dissezione nei protocolli di immunoistochimica Drosophila larvali. Esso consente una rapida, l'elaborazione simultanea di un gran numero di embrioni in fase avanzata e le larve e mantiene nella morfologia situ. Dopo fissazione in formaldeide, un campione viene sonicato. Campione viene quindi sottoposto ad immunocolorazione con antigene-specifica formica primariaibodies e anticorpi secondari fluorescente di visualizzare tipi di cellule bersaglio e proteine ​​specifiche mediante microscopia a fluorescenza. Durante il processo di sonicazione, il corretto posizionamento di una sonda sonicating sopra il campione, nonché la durata e l'intensità della sonicazione, è critica. Additonal piccole modifiche ai protocolli di immunoistochimica standard possono essere richiesti per le macchie di alta qualità. Per gli anticorpi con basso rapporto segnale rumore, tempi di incubazione più lunghi sono in genere necessari. Come un proof of concept per questo protocollo sonicazione-facilitato, mostriamo immunoistochimiche su tre tipi di tessuto (testicoli, ovaie, e tessuti neurali) ad una serie di stadi di sviluppo.

Introduction

Embrioni di Drosophila e larve forniscono un ottimo modello per lo studio dei processi di sviluppo in molti organi e tessuti. Imaging delle singole cellule è spesso necessario in questi studi per verificare gli ambienti complessi in cui le cellule si sviluppano. Visualizzazione di cellule nei tessuti può essere realizzato attraverso immunostaining. Ben descritti immunoistochimica esistono protocolli per i tessuti embrionali di Drosophila <17 ore dopo la deposizione delle uova (AEL) 1-3. Tuttavia, un protettivo forme cuticola verso la fine dell'embriogenesi, impedendo efficace permeazione anticorpo. Così, questi protocolli immunostaining sono inefficienti per l'analisi dei tessuti in embrioni in ritardo-fase e nelle successive fasi di sviluppo larvale (1 ° instar (L1), 2 ° instar (L2), e 3 ° instar (L3)). Questa inefficienza impone un ostacolo alla nostra comprensione dei processi dinamici che si verificano durante il periodo di sviluppo prolungato 4. Tissue dissezione è una tecnica largamente impiegato per aggirare questa barriera 5-7. Tuttavia, dissezione può rivelarsi inefficiente. L'estrazione può essere gravato da difficoltà nel trovare o isolare embrionale e tessuti larvali. Inoltre, la rimozione fisica dei tessuti bersaglio può causare danni da loro rottura o omettendo di estrarli nella loro interezza.

La sonicazione è un metodo che impiega onde sonore disturbare interazioni intermolecolari. È stato usato per disturbare l'integrità della cuticola larvale Drosophila per immunostain sviluppare tipi di cellule neurali 6. Questo protocollo è stato adattato per immunostain ritardo-fase embrionale e larvale gonadi, che può essere piccolo come 50 micron di diametro 8-10. Attraverso tali studi, il processo di maschio di cellule staminali germinali (GSC) formazione di nicchia è stata caratterizzata nell'ultima fase embrioni di Drosophila 8-10 e meccanismi che regolano lo sviluppo delle cellule staminali e difdifferenzia- nell'ultima fase gonadi embrionali e le larve sono stati chiariti 9-12. Così, sonicazione fornisce un'alternativa efficiente per la dissezione dei tessuti che può essere difficile a causa delle dimensioni del tessuto. Inoltre, esso consente immunocolorazione di tessuti di Drosophila in situ, lasciando le cellule nel contesto dell'intero organismo e mantenuto in situ morfologia. Qui, descriviamo un protocollo step-by-step per fluorescenza immunoistochimica di ritardo-fase embrionale attraverso primi tessuti / mid-L3 in situ. Analisi di Drosophila gonadica e neurale tessuto è mostrato nelle Rappresentante dei risultati per dimostrare l'efficacia di questo protocollo. Inoltre, questo protocollo immunostaining può essere adattato ad analizzare altri tessuti di Drosophila così come i tessuti in altri organismi con una cuticola esterna.

Protocol

1 Preparazione di una gabbia Collection Anestetizzare giovani, mosche fertili con CO 2. Trasferimento mosche anestetizzati ad una gabbia. Per ottenere il rendimento ottimale, utilizzare 100-120 mosche adulte che vanno da 2-7 giorni di età in un rapporto 4: 1 di femmine ai maschi. Consenti mosche un adeguato periodo di acclimatazione, ~ 24 ore prima di ottenere il campione per il fissaggio. Se la gabbia è stato istituito con femmine vergini accoppiato ai maschi, un uso un 36 – periodo di acclimata…

Representative Results

Per dimostrare l'efficacia di immunoistochimica basata sonicazione-analisi di ritardo-fase embrionale e tessuti larvali in situ, wild-type embrioni e larve sono stati trattati per immunoistochimica dei testicoli, ovaie e tessuto neurale. I campioni sono stati ripresi tramite microscopia confocale e risultati rappresentativi sono mostrati (Figura 1 e Figura 2). I risultati rivelano che il protocollo descritto è efficace per la visualizzazione di caratteri morfologici, nonch…

Discussion

Questo protocollo fornisce un metodo per indirizzare correttamente immunostain Drosophila embrionale e tessuti larvali in situ, eliminando così la necessità di dissezione. Come per i protocolli precedenti per la colorazione embrioni precoci 1,2,3, la membrana corionica viene rimossa con il 50% di candeggina (NaOCl). I campioni sono fissati in formaldeide e metanolo. Poiché la cuticola larvale provoca campione più vecchio a stare a galla, l'intero campione viene fatto passare attraver…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Siamo grati a Ruth Lehman e Dorthea Godt che ci ha gentilmente fornito gli anticorpi Vasa e traffico Jam. Vorremmo riconoscere il Bloomington Stock Center presso l'Indiana University per mantenere le scorte e la Developmental Studies Ibridoma Banca, sotto gli auspici del NICHD e mantenuti da The University of Iowa. Ringraziamo tutti i membri del laboratorio Wawersik per i loro consigli e sostegno. Questo lavoro è stato finanziato dalla Monroe Scholars Program Grant (per AF e LB) e NSF concedere IOS0823151 (a MW).

Materials

Table 1: Reagents and Buffers
Phosphate Buffer Triton X-100 (PBTx) For 5 L: 500 mL PBS 10X 4.45 L ddH2O 50 mL Triton 10% Store at room temperature.
Phosphate Buffer Saline 10x (PBS 10X) For 1 L in dH2O: 80 g NaCl 2 g KCl 14.4g Na2HPO4 2.4 g KH2PO4 Add components and fill to appropriate volume. Store at 4 degrees C.
Triton 10% For 50 mL: 5 mL of Triton 5 mL of PBS 10X 45 mL of ddH2O Rock to mix. Store at room temperature.
PEMS 0.1 M Pipes (pH 6.9) 2.0 mM MgSO4 1.0 mM EGTA Store at room temperature.
Pipes For a 400ml of a 0.25 M solution (pH 6.9): 30.24 g Pipes dH20 NaOH Dissolve Pipes in 300 mL dH2Oand then adjust to pH 6.9 with NaOH. Bring the total volume to 400 mL with dH2O and autoclave. Store at room temperature.
Formaldehyde 37% formaldehyde by weight in methanol Store at room temperature. Store formaldehyde, heptane, and methanol waste mixture in a tightly sealed container in fume hood before disposal as per institutional guidelines.
Heptane n-Heptane CAS 142-82-5. Store at room temperature. Store formaldehyde, heptane, and methanol waste mixture in a tightly sealed container in fume hood before disposal as per institutional guidelines.
Methanol Methanol CAS 67-56-1. Store at room temperature. Store formaldehyde, heptane, and methanol waste mixture in a tightly sealed container in fume hood before disposal as per institutional guidelines.
Phosphate Buffer Tween (PBTw) To make 1 L: 100 mL PBS 10X 890 mL ddH2O 10 mL Tween 10% Filter sterilize after adding all components. Store at 4 degrees C.
Tween 10% For 50 mL: 5 mL Tween 5 mL of PBS 10X 40 mL of ddH2O Rock to mix. Store at room temperature.
Bovine Serum Albumin/Phosphate Buffer Tween (BBTw) To make 1 L: 100 mL PBS 10X 890 mL ddH2O 10 mL Tween 10% 1 g Bovine Serum Albumin (BSA) Add BSA then sterilize using a 0.2 micrometer vacuum filter unit. Store at 4 degrees C.
Normal Goat Serum (NGS) To make 10 mL: Normal Goat Serum (Jackson ImmunoResearch Laboratories Code: 005-000-121) 10 mL ddH2O Add ddH2O to vial of NGS and sterilize using a 0.2 micrometer syrninge filter. Store aliquots at -20 degrees C.
1,4-diazabicyclo[2.2.2]octane (DABCO) To make 100 mL: 25 mL ddH2O 1 mL Tris HCl (1M, pH 7.5) 2.5 g of DABCO solid (CAS: 281-57-9) 3.5 mL 6N HCl 250 uL 10N NaOH 70 mL glycerol In 250 mL beaker with stir bar, add ddH2O, Tris HCl and DABCO. Stir and then add 6N HCl, 10 N NaOH, and glycerol. Then add 10NaOH dropwise until solution reaches pH 7.5. Aliquot. Store aliquots at -20 degrees C.
DABCO + p-phenylenediamine (PPD) Solution 1.765 mL NaHCO3 0.353 Na2CO3 0.02 g PPD (CAS: 106-50-3) Dissolve PPD in NaHCO3 and NaCO3 solution. Add 60 uL of PPD solution to 500 uL of DABCO. Store aliquots at -20 degrees C.
Apple juice plates To make ~200 plates: 45 g agar (CAS#9002-18-0) 45 g granulated sugar (store bought) 500 mL Apple juice (store bought) 15 mL Tegosept 10% 1.5 mL ddH2O Add agar to ddH2O in 4L flask then autoclave for 30 minuntes. Mix apple juice and sugar on heated stir plate. Gradually add apple juice mixture to autoclaved agar. Mix on heated stir plate then aliquot 10mL volumes into 35 mm petri dishes and let stand at room temperature to solidfy. Store at 4 degrees C.
Tegosept 10% To make 100mL: 10g Tegosept 100 mL Ethanol Store aliquots at -20 degrees C
Yeast paste ~50 g Dry Active Yeast Gradually add ddH2O to beaker containing yeast while stirring until paste-like consistency reached. Store at 4 degrees C.
Table 2: Staining Materials
DAPI 1:1000 Invitrogen D3571 //// Stock at 5mg/mL
rabbit anti-Vasa 1:250 A gift from Ruth Lehmann
mouse anti-Fasciclin III 1:10 Developmental Studies Hybridoma Bank (DSHB) 7G10
mouse anti-1B1 1:4 Developmental Studies Hybridoma Bank (DSHB) 1B1
guniea pig anti-Traffic Jam 1:2500 A gift from Dorthea Godt (Li et al, 2003)
mouse anti-Prospero 1:10 Developmental Studies Hybridoma Bank (DSHB) Prospero MR1A
rat anti-Elav 1:30 Developmental Studies Hybridoma Bank (DSHB) Rat-elav 7EBA10 anti-elav
mouse anti-Repo 1:10 Developmental Studies Hybridoma Bank (DSHB) 8D12 anti-Repo
goat anti-rabbit Alexa546 1:500 Invitrogen A11010
goat anti-mouse Alexa488 1:500 Invitrogen A11029
goat anti-guniea pig Alexa633 1:500 Invitrogen A21105
goat anti-rat Alexa488 1:500 Invitrogen A11006
Table 3: Materials and Equipment
Fly Cages Hand-made; Genesee Scientific Corporation Not applicable; Bottles: 32-130; Pre-made cage: 59-101 Made by cutting clear cast acrylic tubing (1 3/4 inch in diameter) into 4 inch tall segments with a compound miter saw at 400 rpm. Ultrafine stainless steel screening (was attached to one end of the tub with acrylic compund glue. An alternate method using an empty fly food bottle can be found in Drosophila Protocols ISBN 0-87969-584-4. Cages may also be purchased from the Genesee Scientific Corporation.
Sonicator: Branson 250 Digital Sonifier Branson Model: Branson Digital Sonifier 250
Sonicator Probe Branson Model #: 102C (CE) EDP: 101-135-066; S/N: OBU06064658
Syringe filter Nalgene 190-25-20 0.2 micrometer cellulose, acetate membrane filter
Imaging system: Spinning disc confocal microscope with multichromatic light source, digital CCD camera, and imaging software Microscope: Olympus Light source: Lumen Dynamics Camera: Q-Imaging Imaging Software: Intelligent Imaging Inc. Microscope: BX51 equipped with DSU spinning disc Light source: X-Cite 120Q Camera: RETIGA-SRV Imaging Software: Slidebook 5.0
Vacuum filter unit Nalgene 450-0020 0.2 micrometer cellulose nitrate membrane filter

References

  1. Moore, L. A., Broihier, H. T., Van Doren, M., Lunsford, L. B., Lehmann, R. Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development. 125, 667-678 (1998).
  2. Rothwell, W. F., Sullivan, W. . Drosophila Protocols. , 141-157 (2000).
  3. Jenkins, A. B., McCaffery, J. M., Van Doren, M. Drosophila E-cadherin is essential for proper germ cell-soma interaction during gonad morphogenesis. Development. 130, 4417-4426 (2003).
  4. Ashburner, M., Golic, K., Hawley, R. S. . Drosophila: A Laboratory Handbook. , 122-205 (2005).
  5. Blair, S. S., Sullivan, W., Ashburner, M., Hawley, R. S. . Drosophila Protocols. , 159-173 (2000).
  6. Patel, N., Goldstei, L. S. B., Fryberg, E. A. Drosophila melanogaster: Practical Uses in Cell and Molecular Biology. Methods in Cell Biology. , 445-487 (1994).
  7. Maimon, I., Gilboa, L. Dissection and staining of Drosophila larval ovaries. J Vis Exp. , (2011).
  8. Le Bras, S., Van Doren, M. Development of the male germline stem cell niche in Drosophila. Dev Biol. 294, 92-103 (2006).
  9. Sheng, X. R., et al. Jak-STAT regulation of male germline stem cell establishment during Drosophila embryogenesis. Dev Biol. 334, 335-344 (2009).
  10. Sinden, D., et al. Jak-STAT regulation of cyst stem cell development in the Drosophila testis. Dev Biol. 372, 5-16 (2012).
  11. DeFalco, T., Camara, N., Le Bras, S., Van Doren, M. Nonautonomous sex determination controls sexually dimorphic development of the Drosophila gonad. Dev Cell. 14, 275-286 (2008).
  12. Jemc, J. C., Milutinovich, A. B., Weyers, J. J., Takeda, Y., Van Doren, M. raw Functions through JNK signaling and cadherin-based adhesion to regulate Drosophila gonad morphogenesis. Dev Biol. 367, 114-125 (2012).
  13. Fuller, M., Bat, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , 71-147 (1993).
  14. Cuevas, M., Matunis, E. L. The stem cell niche: Lessons from Drosophila testis. Development. 138, 2861-2869 (2011).
  15. Williamson, A., Lehmann, R. Germ cell development in Drosophila. Annu Rev Cell Dev Biol. 12, 365-391 (1996).
  16. Jemc, J. C. Somatic gonadal cells: the supporting cast for the germline. Genesis. 49, 753-775 (2011).
  17. Spradling, A. C., Bat, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , 1-70 (1993).
  18. Eliazer, S., Buszczak, M. Finding a niche: studies from the Drosophila ovary. Stem Cell Res Ther. 2, 45 (2011).
  19. Sahut-Barnola, I., Godt, D., Laski, F. A., Couderc, J. L. Drosophila ovary morphogenesis: Analysis of terminal filament formation and identification of a gene required for this process. Developmental Biology. 170, 127-135 (1995).
  20. Godt, D., Laski, F. A. Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric a brac. Development. 121, 173-187 (1995).
  21. Gancz, D., Lengil, T., Gilboa, L. Coordinated regulation of niche and stem cell precursors by hormonal signaling. PLoS Biol. 9, e1001202 (2011).
  22. Matsuoka, S., Hiromi, Y., Asaoka, M. Egfr signaling controls the size of the stem cell precursor pool in the Drosophila ovary. Mech Dev. 130, 241-253 (2013).
  23. Song, X., Zhu, C. H., Doan, C., Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 296, 1855-1857 (2002).
  24. Homem, C. C., Knoblich, J. A. Drosophila. neuroblasts: a model for stem cell biology. Development. 139, 4297-4310 (2012).
  25. Urbach, R., Technau, G. M. Neuroblast formation and patterning during early brain development in Drosophila. BioEssays. 26, 739-751 (2004).
  26. Bello, B., Reichert, H., Hirth, F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development. 133, 2639-2648 (2006).
  27. Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P., Doe, C. Q. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell. 10, 441-449 (2006).
  28. Betschinger, J., Mechtler, K., Knoblich, J. A. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell. 124, 1241-1253 (2006).
  29. Pereanu, W., Shy, D., Hartenstein, V. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol. 283, 191-203 (2005).
  30. Moraru, M. M., Egger, B., Bao, D. B., Sprecher, S. G. Analysis of cell identity, morphology, apoptosis and mitotic activity in a primary neural cell culture system in Drosophila. Neural Dev. 7, 14 (2012).

Play Video

Cite This Article
Fidler, A., Boulay, L., Wawersik, M. Sonication-facilitated Immunofluorescence Staining of Late-stage Embryonic and Larval Drosophila Tissues In Situ. J. Vis. Exp. (90), e51528, doi:10.3791/51528 (2014).

View Video