Summary

自体血液或梭菌胶原酶脑内注射为脑出血的小鼠模型

Published: July 03, 2014
doi:

Summary

Preclinical models of intracerebral hemorrhage are utilized to mimic certain aspects of clinical disease. Thus, mechanisms of injury and potential therapeutic strategies may be explored. In this protocol, two models of intracerebral hemorrhage are described, intrastriatal (basal ganglia) injections of autologous blood or collagenase.

Abstract

脑出血(ICH)是脑血管疾病的一种常见的形式,并与显著发病率和死亡率相关联。缺乏针对止血和血栓清除大型临床试验有效的治疗和失败表明,有必要对非物质文化遗产的机制,进一步推动调查。这项研究可能通过临床前模型提供的框架下进行。两种小鼠模型中普遍使用包括纹状体(基底节区)注射要么自体全血或梭菌胶原酶。因为,每一个模型代表与非物质文化遗产明显不同的病理生理特点,使用一个特定的模式,可能基于什么方面的病是需要研究来选择。例如,自体血注入最准确地代表了大脑的反应的实质内血液的存在,并可能最为密切复制脑叶出血。梭菌胶原酶注射最准确地代表的S商场血管破裂和出血深部血肿的演变特征。因此,每个模型的结果在不同的血肿形成,神经炎症反应,减轻脑水肿的发展,以及神经行为的结果。一名自称是治疗干预的鲁棒性可以使用这两种模式是最好的评估。在这个协议中,诱导非物质文化遗产的利用这两种模式,立即手术示范损伤和早期术后护理技术论证。这两款机型导致重复性的伤害,血肿体积和神经行为缺陷。由于人类非物质文化遗产的异质性,需要多个临床前模型,彻底探讨的病理生理机制,并测试潜在的治疗策略。

Introduction

脑出血(ICH)是脑血管病的30日内1折磨的患者中,约有40-50%死于一种比较常见的形式。不幸的是,很少有改善的死亡率在过去的20年2。卫生3和全国学院从美国心脏协会4指引报告强调了发展非物质文化遗产的临床相关模型,以延长病理生理的认识和发展目标,新的治疗方法的重要性。

几种模式的存在是为了模仿人类非物质文化遗产5。由于脑出血病理生理的成熟的认识,它已成为明显的是,有多种型号可用于研究疾病的不同方面。以前使用的模型包括小鼠淀粉样血管病6,脑实质微球插入和通胀7,并直接动脉血浸润8,9。从淀粉样血管病脑叶出血进行了建模与使用转基因小鼠,代表了独特的非物质文化遗产亚型。微球模型模拟急性占位效应的血肿形成,但无法捕捉到大脑的血液存在细胞反应。最后,直接的动脉血液渗受试者大脑从股动脉的动脉压力。因此,该模型模拟动脉压和血液的存在,但不受到大脑由小血管破裂微血管损伤。此外,该模型具有固有的高变异性。有趣的是,自发性高血压大鼠10自发发展非物质文化遗产因为他们的年龄。脑出血后发展研究这些动物可能模​​仿这种疾病的主要合并症诱发人类非物质文化遗产之一的存在。虽然这些其他车型存在,纹状体内注射胶原酶梭菌11或instrastiatal注射液的中utologous全血12顷 ,目前,用于临床前研究的ICH最常见的两种模型。

脑出血模型的选择应根据实验的问题,包括品种选择,诱导形成血肿的方法的目标进行。举例来说,猪是大动物与比较大脑白质大脑体积相对于小鼠。因此,猪模型适合于研究脑白质病理生理以下非物质文化遗产。相比之下,啮齿动物的大脑在很大程度上是灰质,但转基因系统,使有用的啮齿动物脑出血后,评估损伤和恢复的分子机制。每个模型都有其固有的优势和劣势( 表1),这应前实验慎重考虑。

以下协议证明在小鼠体内的自体血和胶原酶注射模型。这些模型已分别被翻译从最初在大鼠模型13,14和允许使用广泛使用转基因技术探索脑出血后与细胞死亡相关的分子机制。都代表人类非物质文化遗产明显不同损伤的机制,并且都具有明显不同的预期结果中的行为和组织措施方面。因此,某些假设可能会借给自己一个模型比其他,但很多想法可能需要验证在两个模型。

表1比较胶原酶和自体血注射脑出血模型的特点。

<tr>
注射胶原酶注血
易于使用 + + + +
再生性 + +
出血的大小控制 + + + +
血液返流 + +
模拟人类疾病 +
简单 + +
使用多个物种 + +

Protocol

伦理声明:此协议已获得杜克大学实验动物管理和使用委员会,遵循一切为道德地使用动物的指导方针。 设备1。准备高压灭菌器在手术之前的外科手术工具。 用70%乙醇消毒的立体定向装置。 打开水浴,保持水温在42℃。 溶于生理盐水IV型-S梭菌胶原酶在0.075ü每0.4微升的浓度。 2,胶原酶注射模型权衡鼠标。 <…

Representative Results

由于血肿形成( 图1)的差异,同侧转动显示醒来自体血注入小鼠体内后,立刻在2 -胶原酶注射后4小时,如血肿扩大发生( 图2)。同侧转动的情况下应提高关注没有显著的伤害。在第一篇文章伤天,老鼠在这两种模式应该表现出显著神经功能缺损( 图3)。在注射后24小时,患侧半球显示稳定的血肿量( 图4);进一步地,在注射后24小时,脑含水…

Discussion

尽管新兴的临床前研究和由此产生的大量临床试验有前途的治疗15-18,也有表现,以改善脑出血预后无药物干预,并照顾在很大程度上仍然支持。可通过高通量技术,如转录组和蛋白质组的工作产生的可能的治疗的列表。虽然这些技术继续推进潜在的治疗靶点我们的知识,前进的希望的目标向后平移可通过使用临床相关临床前模型19-22最好的检验。因为它们允许快速吞吐选定的候?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the American Heart Association Scientist Development Grant and the Foundation for Anesthesia Education and Research (MLJ). We would like to thank Talaignair N. Venkatraman PhD for his assistance with magnetic resonance imaging.

Materials

Name Company Catalog Number Comments
Stereotactic frame Stoelting Co. 51603
Probe holder with corner clamp Stoelting Co. 51631
Mini grinder Power Glide Model 60100002
0.5 µl Hamilton syringe Hamilton Co. 86259 25 gauge needle
50 µl Hamilton syringe Hamilton Co 7637-01
26G Hamilton needle Hamilton Co 7804-03
Syringe pump KD Scientific Model 100
Heat therapy water pump Gaymar Industries, Inc. Model# TP650
Circulating waterbed CMS Tool & Die, Inc.
Rodent ventilator Harvard Apparatus Model 683
Isoflurane vaporizer Drager Vapor 19.1
Air flowmeter Cole Parmer Model PMR1-010295
Induction chamber Self made
Otoscope Welch Allyn 22820
intravenous catheter Becton-Dickinson 381534 20-gauge, 1.16 inch Insyte-W
Isoflurane Baxter Healthcare Corporation NDC10019-360-69
Collagenase Type IV-S Sigma C1889
Polyethylene tubing PE20 Becton-Dickinson 427406
Polyethylene tubing PE10 Becton-Dickinson 427401
30G 1 inch needle Becton-Dickinson 305128
27G 1 1/4 inch needle Becton-Dickinson 305136
Surgical scissors Miltex 21-539
Forceps Miltex 17-307
Needle holder Boboz RS-7840
Monofilament suture Ethicon 8698 Size 5-0
Indicating controller YSI 73ATD

References

  1. Asch, C. J., et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurology. 9, 167-176 (2010).
  2. Qureshi, A. I., Mendelow, A. D., Hanley, D. F. Intracerebral haemorrhage. Lancet. 373, 1632-1644 (2009).
  3. Participants, N. I. W. Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke. 36, (2005).
  4. Morgenstern, L. B., et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 41, 2108-2129 (2010).
  5. James, M. L., Warner, D. S., Laskowitz, D. T. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care. 9, 139-152 (2008).
  6. Winkler, D. T., et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci. 21, 1619-1627 (2001).
  7. Sinar, E. J., Mendelow, A. D., Graham, D. I., Teasdale, G. M. Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg. 66, 568-576 (1987).
  8. Mendelow, A. D., Bullock, R., Teasdale, G. M., Graham, D. I., McCulloch, J. Intracranial haemorrhage induced at arterial pressure in the rat. Part 2: Short term changes in local cerebral blood flow measured by autoradiography. Neurol Res. 6, 189-193 (1984).
  9. Bullock, R., Mendelow, A. D., Teasdale, G. M., Graham, D. I. Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: Description of technique, ICP changes and neuropathological findings. Neurol Res. 6, 184-188 (1984).
  10. Sang, Y. H., Su, H. X., Wu, W. T., So, K. F., Cheung, R. T. Elevated blood pressure aggravates intracerebral hemorrhage-induced brain injury. J Neurotrauma. 28, 2523-2534 (2011).
  11. Krafft, P. R., et al. Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase. J Vis Exp. , (2012).
  12. Sansing, L. H., et al. Autologous blood injection to model spontaneous intracerebral hemorrhage in mice. J Vis Exp. , (2011).
  13. Rosenberg, G. A., Mun-Bryce, S., Wesley, M., Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 21, 801-807 (1990).
  14. Nath, F. P., Jenkins, A., Mendelow, A. D., Graham, D. I., Teasdale, G. M. Early hemodynamic changes in experimental intracerebral hemorrhage. J Neurosurg. 65, 697-703 (1986).
  15. Anderson, C. S., et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 368, 2355-2365 (2013).
  16. Clark, W., Gunion-Rinker, L., Lessov, N., Hazel, K. Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke. 29, 2136-2140 (1998).
  17. Mayer, S. A., et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 358, 2127-2137 (2008).
  18. Mendelow, A. D., et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. , (2013).
  19. James, M. L., Blessing, R., Bennett, E., Laskowitz, D. T. Apolipoprotein E modifies neurological outcome by affecting cerebral edema but not hematoma size after intracerebral hemorrhage in humans. J Stroke Cerebrovasc Dis. 18, 144-149 (2009).
  20. James, M. L., Blessing, R., Phillips-Bute, B. G., Bennett, E., Laskowitz, D. T. S100B and brain natriuretic peptide predict functional neurological outcome after intracerebral haemorrhage. Biomarkers. 14, 388-394 (2009).
  21. James, M. L., Sullivan, P. M., Lascola, C. D., Vitek, M. P., Laskowitz, D. T. Pharmacogenomic effects of apolipoprotein e on intracerebral hemorrhage. Stroke. 40, 632-639 (2009).
  22. James, M. L., et al. Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice. J Neurotrauma. 27, 217-228 (2010).
  23. Indraswari, F., et al. Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. J Neurotrauma. 29, 1388-1400 (2012).
  24. Laskowitz, D. T., et al. The apoE-mimetic peptide, COG1410, improves functional recovery in a murine model of intracerebral hemorrhage. Neurocrit Care. 16, 316-326 (2012).
  25. Lei, B., et al. Interaction between sex and apolipoprotein E genetic background in a murine model of intracerebral hemorrhage. Translational Stroke Research. 3, (2012).
  26. Lekic, T., et al. Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg. 118, 465-477 (2013).
  27. Nakamura, T., et al. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab. 24, 487-494 (2004).
  28. Yang, D., et al. Statins Protect the Blood Brain Barrier Acutely after Experimental Intracerebral Hemorrhage. J Behav Brain Sci. 3, 100-106 (2013).
  29. Rynkowski, M. A., et al. A mouse model of intracerebral hemorrhage using autologous blood infusion. Nature Protocols. 3, 122-128 (2008).
  30. Wang, J., Fields, J., Dore, S. The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood. Brain Research. 1222, 214-221 (2008).
  31. MacLellan, C. L., et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 28, 516-525 (2008).

Play Video

Cite This Article
Lei, B., Sheng, H., Wang, H., Lascola, C. D., Warner, D. S., Laskowitz, D. T., James, M. L. Intrastriatal Injection of Autologous Blood or Clostridial Collagenase as Murine Models of Intracerebral Hemorrhage. J. Vis. Exp. (89), e51439, doi:10.3791/51439 (2014).

View Video