Summary

甲状腺病変の正確かつ迅速な局在化のためのカラードップラーマッピングと統合された同期三面再構成

Published: February 09, 2024
doi:

Summary

ここでは、多面3次元再構成とカラードップラー融合を組み合わせた5次元超音波技術により、甲状腺の構造情報と機能情報を同期的に可視化することができます。死角を最小限に抑えることで、この方法は病変の迅速かつ正確な局在化を可能にし、診断精度を向上させ、特に初心者の開業医に利益をもたらします。

Abstract

本稿では、超音波データの5次元(5D)同期再構成に基づく新しい甲状腺検査技術を提案する。生の時間配列は、解剖学的構造を反映した3Dボリュームデータに再構築されます。直交する3つの平面からの三面的な可視化を実現し、腺全体の体系的な検査を提供します。カラードップラーイメージングは、血管の変化をマッピングするために、各トリプラナースライスに統合されています。このマルチモーダル融合により、再構築された5D空間における構造情報、機能情報、血流情報を同期表示することができます。従来のスキャンと比較して、この技術は、柔軟なオフライン診断、スキャンへの依存度の低減、直感的な解釈の強化、包括的な多面評価などの利点を提供します。見落としの誤りを最小限に抑えることで、特に初心者の開業医にとって、診断の精度を向上させることができます。提案された5D融合法は、病変の迅速かつ正確な局在化を可能にし、早期発見を可能にします。今後の研究では、診断精度をさらに向上させるために、生化学マーカーとの統合を検討しています。この技術は、甲状腺検査を進めるためにかなりの臨床的価値があります。

Introduction

橋本甲状腺炎(HT)は、最も頻度の高い自己免疫性甲状腺疾患(AITD)であり、世界のヨウ素が豊富な地域における甲状腺機能低下症の主な原因です1。リンパ球浸潤と甲状腺抗原に対する自己抗体を特徴とし、甲状腺構造の破壊と甲状腺機能低下症を引き起こします2。HTの病期分類は、重症度を評価し、治療の決定を導くことを目的としています。これは、甲状腺刺激ホルモン(TSH)や甲状腺自己抗体3などの生化学的マーカーの組み合わせと、甲状腺超音波検査で見られる超音波検査の特徴に依存しています4,5,6

超音波検査では、HTは、カラードップラー6,7のびまん性エコー源性の低下、不均一なエコーテクスチャー、微小結節性、血流の増加などの特徴的な所見を示します。しかしながら、従来の2次元(2D)グレースケール超音波は、HT病期分類のためにこれらの特徴を系統的に分析するための定量的方法を欠いている8。血管性の変化の評価も、2Dモードでの定性的な目視検査に限定されています。甲状腺の複雑な3次元(3D)構造は、従来の2Dスライス9,10を使用した徹底的な評価をさらに妨げます。これらの要因は、画像の盲点や誤解につながり、特に経験の浅い開業医にとって、感度と特異度が低くなります11,12

従来のハンドヘルド超音波スキャンは、リアルタイムの取得と診断を統合しています。このワークフローへの依存が組み合わさっているため、スキャン中に見落としエラーが発生する可能性が高くなります。また、空間的な位置特定と追跡が欠如しているため、病変の識別とモニタリングは不正確になります12,13。これらの制限に対処するために専用の3D超音波システムが登場し、有望な結果を示しています14,15。しかし、ほとんどの3D超音波技術は、複雑な機械的スキャン機構と特殊なトランスデューサを必要とするため、コストが高く、導入の障壁となっています。

従来の2Dおよび3D超音波技術の限界を克服するために、この研究では、甲状腺検査用に調整された新しい3D再構成および視覚化ソリューションを提案します。広く普及している携帯型超音波を使用して、最初に複数の2Dスイープを取得して、甲状腺全体をスキャンします。次に、3Dボリューム再構成は、2Dシーケンスの空間レジストレーションと融合によって実現されます。同時に、カラードップラーフレームを同時登録し、血流の変化を視覚化する血管マップを作成します。再構成された3Dグレースケールボリュームとカラー血管マップは、最終的に単一のプラットフォームに統合され、同期された多面的な視覚化と構造と機能を組み合わせた検査が可能になります。

この提案された3D融合技術は、複雑な甲状腺形態をさまざまな側面から体系的かつ包括的に評価します。盲点を最小限に抑え、グローバルな俯瞰を可能にすることで、診断精度の向上と見落としミスの削減に役立ち、特に初心者の開業医に利益をもたらす可能性があります。また、マルチモーダルな可視化により、病変の迅速かつ正確な局在化が容易になり、甲状腺結節や腫瘍の早期診断と治療が期待されます。さらに、この方法は、これまでHT病期分類で調査されていなかった定量的な3D特徴分析を導入しています。広く採用されれば、現在の経験に依存する超音波診断手順を標準化し、客観化できる可能性があります。ハンドヘルド3D再構成、マルチモーダル融合、定量的特徴分析、柔軟な可視化を合理化されたワークフローに相乗的に統合することにより、この低コストで使いやすい技術は、甲状腺検査を進歩させるための従来の2D超音波からの診断的に強力な飛躍を表しています。

Protocol

この研究は、北京中医薬大学と提携している孫思廟病院の治験審査委員会によって承認されました。患者は、Sunsimiao病院の甲状腺部門から募集されました。患者は甲状腺超音波検査を受け、研究のためにインフォームドコンセントを与えました。この調査では、ハンドヘルドデバイスを使用して取得した4D超音波データを利用して、甲状腺の三面図を再構築しました。さらに、リアルタイム?…

Representative Results

図1および図2のグラフィカル・ユーザー・インターフェース(GUI)に示すように、超音波スキャン・シーケンスを連続的に確認することができる。しかし、この2次元検査は、甲状腺科医の解剖学的知識に大きく依存して病変の位置を精神的に再構築するため、初心者にとっては困難であり、定量的な一貫性に欠けます。図…

Discussion

プロトコルの重要なステップ
図1図2は検査と診断に価値がありますが、他の視点から病変の位置とビューを決定するには専門家の経験が必要です。橋本甲状腺炎(HT)の診断には、図1図2をリアルタイムで同期させることも重要かつ重要なステップです。プロトコルステップ3.3は、<strong …

Disclosures

The authors have nothing to disclose.

Acknowledgements

この出版物は、陝西省重点研究開発計画:2023-ZDLSF-56および陝西省「科学者+エンジニア」チーム建設:2022KXJ-019の支援を受けました。

Materials

MATLAB MathWorks  2023B Computing and visualization 
Tools for Thyroid Disease Precision Quantification Intelligent Entropy Thyroid-3D V1.0 Beijing Intelligent Entropy Science & Technology Co Ltd.
Modeling for Thyroid Disease

References

  1. Ragusa, F., et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 33 (6), 101367 (2019).
  2. Ralli, M., et al. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 19 (10), 102649 (2020).
  3. Soh, S., Aw, T. Laboratory testing in thyroid conditions – pitfalls and clinical utility. Ann Lab Med. 39 (1), 3-13 (2019).
  4. Cansu, A., et al. Diagnostic value of 3D power Doppler ultrasound in the characterization of thyroid nodules. Turk J Med Sci. 49, 723-729 (2019).
  5. Haugen, B. R., et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 26 (1), 1-133 (2016).
  6. Acharya, U. R., et al. Diagnosis of Hashimoto’s thyroiditis in ultrasound using tissue characterization and pixel classification. Proc Inst Mech Eng H. 227 (7), 788-798 (2013).
  7. Zhang, Q., et al. Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images. Nat Commun. 13 (1), 3759 (2022).
  8. Huang, J., Zhao, J. Quantitative diagnosis progress of ultrasound imaging technology in thyroid diffuse diseases. Diagnostics. 13 (4), 700 (2023).
  9. Gasic, S., et al. Relationship between low vitamin D levels with Hashimoto thyroiditis. Srp Arh Celok Lek. 151 (5-6), 296-301 (2023).
  10. Sultan, S. R., et al. Is 3D ultrasound reliable for the evaluation of carotid disease? A systematic review and meta-analysis. Med Ultrason. 25 (2), 216-223 (2023).
  11. Arsenescu, T., et al. 3D ultrasound reconstructions of the carotid artery and thyroid gland using artificial-intelligence-based automatic segmentation-qualitative and quantitative evaluation of the segmentation results via comparison with CT angiography. Sensors. 23 (5), 2806 (2023).
  12. Krönke, M., et al. Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry. PLoS One. 17 (7), e0268550 (2022).
  13. Hazem, M., et al. Reliability of shear wave elastography in the evaluation of diffuse thyroid diseases in children and adolescents. Eur J Radiol. 143, 109942 (2021).
  14. Herickhoff, C. D., et al. Low-cost volumetric ultrasound by augmentation of 2D systems: design and prototype. Ultrasound Imaging. 40 (1), 35-48 (2017).
  15. Seifert, P., et al. Optimization of thyroid volume determination by stitched 3D-ultrasound data sets in patients with structural thyroid disease. Biomedicines. 11 (2), 381 (2023).

Play Video

Cite This Article
Chen, Z., Ding, Z., Hu, R., Liang, T., Xing, F., Qi, S. Synchronous Triplanar Reconstruction Integrated with Color Doppler Mapping for Precise and Rapid Localization of Thyroid Lesions. J. Vis. Exp. (204), e66569, doi:10.3791/66569 (2024).

View Video