Summary

选择与无选择生物鉴定研究蛾 grisescens的化蛹偏好及出现的成功

Published: October 30, 2018
doi:

Summary

在这里, 我们提出了一个协议, 以研究蛾 grisescens成熟幼虫的化蛹偏好, 以响应土壤因子 (基质类型和含水量) 使用选择生物鉴定。我们还提出了一种无选择生物鉴定的协议, 以确定影响 grisescens 化蛹行为和存活的因素.

Abstract

许多昆虫生活在地面之上作为幼虫和成人, 并在地下化蛹。与他们生命周期的上述阶段相比, 在土壤中化蛹环境因素对这些昆虫的影响较少。蛾 grisescens (鳞翅目: 尺蛾科) 是茶树的一种严重害虫, 在华南造成了巨大的经济损失。本文所述的协议旨在通过多种选择生物鉴定研究, 即成熟的末龄grisescens幼虫是否能鉴别土壤变量, 如基底类型和含水量, 并通过无选择来确定生物鉴定, 基质类型和含水量对化蛹行为的影响以及 grisescens 的出现成功.研究结果将加深对grisescens化蛹生态学的认识, 并可为抑制grisescens种群的土壤管理策略带来深刻的见解。此外, 还可以对这些生物鉴定进行修改, 研究各种因素对土壤玉米螟害虫化蛹行为和存活的影响。

Introduction

与昆虫幼虫和成虫阶段相比, 由于蛹的移动能力有限, 蛹阶段非常脆弱, 无法迅速逃离危险的环境。玉米螟下面是一个共同的战略使用的不同群体的昆虫 (例如, 在命令双翅目1,2,3,4, 鞘翅目5, 膜翅目6,缨翅目7, 和鳞翅目8,9,10,11,12) 保护他们免受地面捕食者和环境危害。其中许多是严重的农林害虫12345678 ,9,10,11,12。这些土壤玉米螟昆虫的成熟幼虫通常离开主人, 落在地上, 漫步寻找一个合适的地点, 挖洞进入土壤, 并为玉米螟8,10建造一个蛹室。

茶套,蛾 grisescens (鳞翅目: 尺蛾科), 是茶树山茶属植物中最重要的柱坑害虫之一.13。虽然这一物种在1894年首次被描述, 它已被错误地识别为蛾真菌Prout (鳞翅目: 尺蛾科) 在过去的几十年14,15。最近的一些研究14,15,16描述了两种同级物种之间的形态学、生物学和地理分布的差异。例如, 张15报告说, 该地区的倾斜主要发生在中国三个省份 (安徽、江苏和浙江) 的边界, 而grisescens的分布较斜的大得多.因此, grisescens造成的经济损失在很大程度上被忽视了, 这一害虫的知识需要被广泛修订和更新16,17,18,19.我们以前的研究表明, E. grisescens更喜欢在土壤中化蛹, 但也可以在土壤不可用时化蛹 (无化蛹基质条件)11,12

本文提供了一个循序渐进的过程, 以 (1) 确定grisescens的化蛹偏好, 以响应的因素, 如基底类型和水分含量, 通过使用多选择生物鉴定, 和 (2) 确定非生物因素的影响grisescens生物鉴定的化蛹行为及出现的成功。所有这些生物鉴定都是在控制良好的实验室条件下进行的。此外, 这些生物鉴定也适用于评估其他因素对不同土壤玉米螟昆虫化蛹行为和存活的影响。

Protocol

1. 水分选择生物鉴定, 以确定化蛹偏好的E. grisescens 获得grisescens的成熟的末龄幼虫 茶树 (山茶) 的鲜芽 (30-40 厘米长)。将 25-30 芽插入250毫升三角烧瓶中。用自来水灌满烧瓶。在塑料盆中放入 3-4 烧瓶 (带茶树) (上部: 直径51厘米; 底面: 直径40厘米; 高度:16 厘米)。 释放 1000-2000 幼虫 (第二到第五龄) 的实验室殖民地的grisescens到茶叶芽在每?…

Representative Results

生物鉴定的水分选择表明, 与80% 水分砂相比, grisescens个体 pupated 在 5%-35%-水分砂中的含量明显增加 (图 2a)。然而, 有相当多的人更倾向于在土壤中或内化蛹 (沙质壤土1和2和淤泥壤土), 具有中间含水量 (图 2b – 2d)。 <…

Discussion

在一些害虫692223中对不同土壤变量的化蛹偏好进行了研究。例如, 为了研究桔小实 tryoni (乔安妮弗罗加) (双翅目: 实蝇科) 成熟幼虫在不同土壤湿度条件下的偏好, Hulthen 和克拉克22设置 3 x 3 拉丁方形设计, 其中包含9个容器, 填充土壤的 0%, 75%, 或100% 场容量, 和25成熟的幼虫…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢玉珍、圣哲和燕骏 (华南农业大学林业与景观建筑学院) 对昆虫饲养和实验设置的帮助。这项工作由中国国家自然科学基金 (赠款号 31600516)、广东自然科学基金 (赠款号 2016A030310445) 和广东省科技规划项目 (批准号 2015A020208010) 资助。.

Materials

Triangular flask Bomex Chemical (Shanghai) Co., LTD 99 250 mL
Plastic basin Chahua, Fuzhou, China 100 upper side: 51 cm in diameter; bottom side: 40 cm in diameter; height: 16 cm
Zip lock bags Glad, Guangzhou, China 126/133
Polypropylene containers Youyou Plastic Factory, Taian, China 139/155/160/161/190 upper side: 20.0 cm [L] × 13.5 cm [W], bottom side: 17.0 cm [L] × 10.0 cm [W], height: 6.5 cm
Waterproof polyviny chloride sheet Yidimei, Shanghai, China 141
Tape V-tech, Guangzhou, China VT-710
Oven drier Kexi, Shanghai, China KXH-202-3A
Environmental chamber Life Apparatus, Ningbo, China PSX-280H

References

  1. Dimou, I., Koutsikopoulos, C., Economopoulos, A. P., Lykakis, J. Depth of pupation of the wild olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Dipt., Tephritidae), as affected by soil abiotic factors. Journal of Applied Entomology. 127 (1), 12-17 (2003).
  2. Chen, M., Shelton, A. M. Impact of soil type, moisture, and depth on swede midge (Diptera: Cecidomyiidae) pupation and emergence. Environmental Entomology. 36 (6), 1349-1355 (2007).
  3. Holmes, L. A., Vanlaerhoven, S. L., Tomberlin, J. K. Substrate effects on pupation and adult emergence of Hermetia illucens (Diptera: Stratiomyidae). Environmental Entomology. 42 (2), 370-374 (2013).
  4. Renkema, J. M., Cutler, G. C., Lynch, D. H., MacKenzie, K., Walde, S. J. Mulch type and moisture level affect pupation depth of Rhagoletis mendax Curran (Diptera: Tephritidae) in the laboratory. Journal of Pest Science. 84 (3), 281 (2011).
  5. Ellis, J. D., Hepburn, R., Luckman, B., Elzen, P. J. Effects of soil type, moisture, and density on pupation success of Aethina tumida (Coleoptera: Nitidulidae). Environmental Entomology. 33 (4), 794-798 (2004).
  6. Pietrantuono, A. L., Enriquez, A. S., Fernández-Arhex, V., Bruzzone, O. A. Substrates preference for pupation on sawfly Notofenusa surosa (Hymenoptera: Tenthredinidae). Journal of Insect Behavior. 28 (3), 257-267 (2015).
  7. Buitenhuis, R., Shipp, J. L. Influence of plant species and plant growth stage on Frankliniella occidentalis pupation behaviour in greenhouse ornamentals. Journal of Applied Entomology. 132 (1), 86-88 (2008).
  8. Zheng, X. L., Cong, X. P., Wang, X. P., Lei, C. L. Pupation behaviour, depth, and site of Spodoptera exigua. Bulletin of Insectology. 64 (2), 209-214 (2011).
  9. Wen, Y., et al. Effect of substrate type and moisture on pupation and emergence of Heortia vitessoides (Lepidoptera: Crambidae): choice and no-choice studies. Journal of Insect Behavior. 29 (4), 473-489 (2016).
  10. Wen, Y., et al. Soil moisture effects on pupation behavior, physiology, and morphology of Heortia vitessoides (Lepidoptera: Crambidae). Journal of Entomological Science. 52 (3), 229-238 (2017).
  11. Wang, H., et al. Pupation behaviors and emergence successes of Ectropis grisescens (Lepidoptera: Geometridae) in response to different substrate types and moisture contents. Environmental Entomology. 46 (6), 1365-1373 (2017).
  12. Wang, H., et al. No-substrate and low-moisture conditions during pupating adversely affect Ectropis grisescens (Lepidoptera: Geometridae) adults. Journal of Asia-Pacific Entomology. 21 (2), 657-662 (2018).
  13. Ge, C. M., Yin, K. S., Tang, M. J., Xiao, Q. Biological characteristics of Ectropis grisescens Warren. Acta Agriculturae Zhejiangensis. 28 (3), 464-468 (2016).
  14. Xi, Y., Yin, K. S., Tang, M. J., Xiao, Q. Geographic populations of the tea geometrid, Ectropis obliqua (Lepidoptera: Geometridae) in Zhejiang, eastern China have differentiated into different species. Acta Entomologica Sinica. 57, 1117-1122 (2014).
  15. Zhang, G. H., et al. Detecting deep divergence in seventeen populations of tea geometrid (Ectropis obliqua Prout) in China by COI mtDNA and cross-breeding. PloS One. 9 (6), e99373 (2014).
  16. Ma, T., et al. Analysis of tea geometrid (Ectropis grisescens) pheromone gland extracts using GC-EAD and GC× GC/TOFMS. Journal of Agricultural and Food Chemistry. 64 (16), 3161-3166 (2016).
  17. Zhang, G. H., et al. Asymmetrical reproductive interference between two sibling species of tea looper: Ectropis grisescens and Ectropis obliqua. Bulletin of Entomological Research. , (2016).
  18. Luo, Z. X., Li, Z. Q., Cai, X. M., Bian, L., Chen, Z. M. Evidence of premating isolation between two sibling moths: Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae). Journal of Economic Entomology. 110 (6), 2364-2370 (2017).
  19. Li, Z. Q., et al. Chemosensory gene families in Ectropis grisescens and candidates for detection of Type-II sex pheromones. Frontiers in Physiology. 8, (2017).
  20. Chen, L. Q. Research on structure of soil particle by hydrometer method. Environmental Science Survey. 29 (4), 97-99 (2010).
  21. Kucera, M., Malmgren, B. A. Logratio transformation of compositional data: a resolution of the constant sum constraint. Marine Micropaleontology. 34 (1-2), 117-120 (1998).
  22. Hulthen, A. D., Clarke, A. R. The influence of soil type and moisture on pupal survival of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Australian Journal of Entomology. 45 (1), 16-19 (2006).
  23. Alyokhin, A. V., Mille, C., Messing, R. H., Duan, J. J. Selection of pupation habitats by oriental fruit fly larvae in the laboratory. Journal of Insect Behavior. 14 (1), 57-67 (2001).
  24. Torres-Muros, L., Hódar, J. A., Zamora, R. Effect of habitat type and soil moisture on pupal stage of a Mediterranean forest pest (Thaumetopoea pityocampa). Agricultural and Forest Entomology. 19 (2), 130-138 (2017).

Play Video

Cite This Article
Wang, C., Wang, H., Ma, T., Xiao, Q., Cao, P., Chen, X., Xiong, H., Qin, W., Sun, Z., Wen, X. Choice and No-Choice Bioassays to Study the Pupation Preference and Emergence Success of Ectropis grisescens. J. Vis. Exp. (140), e58126, doi:10.3791/58126 (2018).

View Video