Summary

通过改变注意力的焦点, 可以调节皮质在初级运动皮层内的抑制

Published: September 11, 2017
doi:

Summary

本文采用两种不同的经颅磁刺激 (TMS) 协议, 介绍了在采用不同的注意焦点时, 如何测量和比较初级运动皮层皮质抑制。

Abstract

它是公认的一个外在焦点 (EF) 与内部焦点 (如果) 比较注意改善马达学习和表现。研究表明, 在准确性, 平衡, 力量生产, 跳跃性能, 运动速度, 耗氧量, 和疲劳的任务的好处。虽然使用 EF 策略的行为结果是很好的探索, 但底层的神经机制仍然未知。最近的一项 TMS 研究比较了在 EF 和 IF 之间的主要运动皮层 (M1) 的活动。更确切地说, 该研究表明, 在采用 EF 时, 皮质抑制电路的活性得到提高。

在行为层面上, 本协议在第一次背侧骨间 (FDI) 最大收缩时, 测试注意焦点对任务失败时间的影响。另外, 本文还介绍了两种 TMS 协议来评估注意条件对 M1 内皮层抑制回路活动的影响。因此, 本文介绍了如何使用脉冲 tms 在强度低于电机阈值 (subTMS) 和配对脉冲 tms, 诱导近皮质抑制 (SICI) 时, 适用于 M1。由于这些方法被认为反映了 gaba 抑制神经元的反应性, 而不受脊髓反射线路的影响, 它们非常适合于测量 M1 内皮质抑制回路的活动。

结果表明, 通过外部引导注意力可以提高运动性能, 因为参与者能够延长任务失败的时间。此外, 结果还伴随着一个更大的 subTMS 诱导肌电图抑制和 SICI 时, 采用 EF 与 IF。由于 M1 的皮质抑制水平以前被证明对影响运动性能, 增强的抑制与 EF 可能有助于更好的运动效率观察到的行为任务, 表明由一个长期的专题信托基金与孚.

Introduction

现在人们普遍认为, 采用 EF 与 IF 或中性关注焦点相比, 可以在许多设置1中促进马达性能和学习。例如, 它已经显示, 采用 EF 带来的好处的准确性2,3, 平衡4,5,6, 强制生产7,8, 跳跃性能7,9,10,11, 移动速度12, 耗氧量13,14, 以及疲劳任务15,16

另一方面, 由于脑激活是所有运动的基础, 对运动的神经控制的几个方面进行了调查。例如, 在 M1 中调节皮质抑制的水平和能力已经被证明对运动功能有很强的影响, 如间协调17、体位控制18和灵巧性19。此外, 较年轻的成年人, 如年长者或儿童 (早产20) 的运动控制能力较差的人群, 通常表现出不太明显的抑制控制。因此, 虽然抑制过程的作用还没有得到很好的理解, 但抑制过程似乎对一般的电机执行质量很重要。

有可能研究皮质抑制线路是使用无创的经颅磁刺激 (TMS)。最常用的刺激协议应用配对脉冲 TMS (ppTMS) 诱导 SICI。该协议使用低于马达阈值的调节刺激, 以降低阈控制刺激响应的振幅, interstimulus 间隔为1-5 毫秒21,22,23,24. 然后, 报告作为控制刺激的百分比, 运动诱发电位 (欧洲议员) 的振幅可以在不同的条件下进行比较, 提供有关皮质抑制活动和 M1 内调制的信息。

另一种用于评估 intractortical 抑制电路活动的刺激协议适用于单个脉冲, 所有的刺激都在电机阈值以下的强度下传递 (即, subTMS)。此协议在正在进行的肌电信号活动中诱导抑制18,25,26。这种 so-called subTMS 诱导的肌电抑制可以比较的数量和持续时间。虽然此协议不是常用的, 但与标准的 SICI 协议相比, 它具有某些优点。这个协议不干扰马达施行, 因为它不导致阈刺激。两种方法都测试皮质γ-丁酸 (GABA) 抑制神经元的响应性,23,27

尽管使用 EF 相比, 如果在马达性能1上有众所周知的好处, 但基本的神经过程仍然很不清楚。在前 fMRI 研究28中, 实验表明, 当受试者执行手指序列并采用 EF 与 IF 相比, 血氧水平依赖性 (粗体) 激活在 M1、原发性躯体感觉和岛状皮质中增强。由于兴奋性和抑制性活动不能被区分的 fMRI29, 另一项最近的研究,16规定, 增强活动的 M1 与 EF 可能, 事实上, 是由于增强活动的皮质抑制电路。更确切地说, 这项研究表明, 抑制 gaba 神经元的兴奋性可以立即调整的类型, 注意焦点采取在同一人。

本协议的主要目的是展示两种可能的方法来比较认知操作 (注意指令的焦点) 对皮质抑制电路在 M1 中的活动的直接影响。SubTMS 和 ppTMS 都使用。此外, 通过对最大等长轴的持续收缩的研究, 探讨了注意焦点对运动行为影响的一种可能的方法。

Protocol

本议定书经当地道德委员会批准, 实验符合赫尔辛基宣言 (1964). 1. 道德认同和主题说明 在开始测量之前, 请所有参与者了解潜在的风险因素和研究的目的。不要给出注意力焦点的信息, 因为这可能会影响结果。确保在研究设置中应用 TMS 的安全指南 30 被遵循. 注: 在应用 TMS 时, 有一些医疗风险因素, 包括植入的颅电极和人工耳蜗, 晕厥或癫痫?…

Representative Results

注意焦点对运动性能的影响: 在目前的研究中, 行为测试被用来证明运动任务的可行性, 并确定在应用 EF 时反应积极的对象。根据先前的研究 (参见1以进行审查), 我们的结果显示, 当参与者通过 EF 与 IF (参见图 3) 进行比较时, 使用了一个长期的专题信托基金。因此, 在等距食指的绑架过程中,…

Discussion

该协议显示了两种可能的方法来研究 M1 内抑制电路的活动使用 TMS。更确切地说, 这两个协议已被用于研究的注意焦点对抑制电路的活动的 M1 内的影响。

所提出的方法的一个限制是, 它并不总是可能导致 subTMS 的肌电图抑制, 而没有在它之前的便利。例如, 在这项研究中, 四受试者必须从最后的分析中移除, 因为它们没有显示出任何一致的 subTMS 诱发的肌电信号抑制。尽管如此, ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者没有致谢。

Materials

MC3A-100 Advanced Mechanical Technologies Inc., Watertown, MA, USA Force transducer
BlueSensor P Ambu A/S, Bellerup, Denmark Ag/AgCl surface electrodes for EMG
Polaris Spectra Northern Digital, Waterloo, ON, Canada neuronavigation system, active or passive markers tracker
Localite TMS Navigator Version 2.0.5 LOCALITE GmbH, Sankt Augustin, Germany navigation system for transcranial magnetic stimulation (TMS)
MagVenture MagPro X100 MagVenture A/S, Farum, Denmark 9016E0711 Transcranial magnetic stimulator
MagVenture D-B80 MagVenture A/S, Farum, Denmark 9016E0431 TMS coil (figure of eight)
Goniometer N/A Custom-made goniometer
Othopedic splint N/A Custom-made splint
Recording software LabView based Custom-made script

References

  1. Wulf, G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 6 (1), 77-104 (2012).
  2. Perkins-Ceccato, N., Passmore, S. R., Lee, T. D. Effects of focus of attention depend on golfers’ skill. J Sports Sci. 21 (8), 593-600 (2003).
  3. Marchant, D. C., Clough, J. C., Crawshaw, M. The effects of attentional focusing strategies on novice dart throwing performance and their task experiences. Int Rev Sport Exerc Psychol. 5 (3), 291-303 (2007).
  4. Oliveira, R. M., Gurd, J. M., Nixon, P., Marshall, J. C., Passingham, R. E. Micrographia in Parkinson’s disease: the effect of providing external cues. J Neurol Neurosurg Psychiatry. 63 (4), 429-433 (1997).
  5. Landers, M., Wulf, G., Wallmann, H., Guadagnoli, M. An external focus of attention attenuates balance impairment in patients with Parkinson’s disease who have a fall history. Physiotherapy. 91 (3), 152-158 (2005).
  6. Wulf, G., Landers, M., Lewthwaite, R., Töllner, T. External focus instructions reduce postural instability in individuals with Parkinson disease. Phys Ther. 89 (2), 162-168 (2009).
  7. Wulf, G., Dufek, J. S. Increased jump height with an external focus due to enhanced lower extremity joint kinetics. J Mot Behav. 41 (5), 401-409 (2009).
  8. Marchant, D. C. Attentional Focusing Instructions and Force Production. Front Psychol. 1, 1-9 (2011).
  9. Wälchli, M., Ruffieux, J., Bourquin, Y., Keller, M., Taube, W. Maximizing Performance: Augmented Feedback, Focus of Attention, and/or Reward?. Med Sci Sports Exerc. 48 (4), 714-719 (2015).
  10. Keller, M., Lauber, B., Gottschalk, M., Taube, W. Enhanced jump performance when providing augmented feedback compared to an external or internal focus of attention. J Sports Sci. 33 (10), 1067-1075 (2015).
  11. Wulf, G., Dufek, J. S., Lozano, L., Pettigrew, C. Increased jump height and reduced EMG activity with an external focus. Hum Mov Sci. 29 (3), 440-448 (2010).
  12. Fasoli, S. E., Trombly, C. A., Tickle-Degnen, L., Verfaellie, M. H. Effect of instructions on functional reach in persons with and without cerebrovascular accident. Am J Occup Ther. 56 (4), 380-390 (2002).
  13. Schücker, L., Anheier, W., Hagemann, N., Strauss, B., Völker, K. On the optimal focus of attention for efficient running at high intensity. Sport Exerc Perform Psychol. 2 (3), 207-219 (2013).
  14. Schücker, L., Hagemann, N., Strauss, B., Völker, K. The effect of attentional focus on running economy. J Sports Sci. 27 (12), 1241-1248 (2009).
  15. Lohse, K. R., Sherwood, D. E. Defining the focus of attention: effects of attention on perceived exertion and fatigue. Front Psychol. 2, 332 (2011).
  16. Kuhn, Y. A., Keller, M., Ruffieux, J., Taube, W. Adopting an external focus of attention alters intracortical inhibition within the primary motor cortex. Acta Physiol (Oxf). , (2016).
  17. Fujiyama, H., Hinder, M. R., Schmidt, M. W., Garry, M. I., Summers, J. J. Age-related differences in corticospinal excitability and inhibition during coordination of upper and lower limbs. Neurobiol Aging. 33 (7), (2012).
  18. Papegaaij, S., et al. Postural challenge affects motor cortical activity in young and old adults. Exp Gerontol. 73, 78-85 (2016).
  19. Heise, K. -. F., et al. The Aging Motor System as a Model for Plastic Changes of GABA-Mediated Intracortical Inhibition and Their Behavioral Relevance. J Neurosci. 33 (21), 9039-9049 (2013).
  20. Flamand, V. H., Nadeau, L., Schneider, C. Brain motor excitability and visuomotor coordination in 8-year-old children born very preterm. Clin Neurophysiol. 123 (6), 1191-1199 (2012).
  21. Kujirai, T., et al. Corticocortical inhibition in human motor cortex. J Physiol. 471, 501-519 (1993).
  22. Wassermann, E. M., et al. Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscles. Exp Brain Res. 109 (1), 158-163 (1996).
  23. Di Lazzaro, V., et al. Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res. 119 (2), 265-268 (1998).
  24. Chen, R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res. 154 (1), 1-10 (2004).
  25. Lauber, B., Keller, M., Leukel, C., Gollhofer, A., Taube, W. Specific interpretation of augmented feedback changes motor performance and cortical processing. Exp Brain Res. 227 (1), 31-41 (2013).
  26. Lauber, B., Leukel, C., Gollhofer, A., Taube, W. Time to task failure and motor cortical activity depend on the type of feedback in visuomotor tasks. PLoS One. 7 (3), e32433 (2012).
  27. Davey, N. J., Romaiguère, P., Maskill, D. W., Ellaway, P. H. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol. 477 (2), 223-235 (1994).
  28. Zentgraf, K., et al. Neural correlates of attentional focusing during finger movements: A fMRI study. J Mot Behav. 41 (6), 535-541 (2009).
  29. Arthurs, O. J., Boniface, S. How well do we understand the neural origins of the fMRI BOLD signal?. Trends Neurosci. 25 (1), 27-31 (2002).
  30. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 120 (12), 2008-2039 (2009).
  31. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 126 (6), 1071-1107 (2015).
  32. Seifert, T., Petersen, N. C. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans. Acta Physiol (Oxf). 199, 317-325 (2010).
  33. Sidhu, S. K., Cresswell, A. G., Carroll, T. J. Short-interval intracortical inhibition in knee extensors during locomotor cycling. Acta Physiol (Oxf). 207 (1), 194-201 (2013).
  34. Zuur, A. T., et al. Contribution of afferent feedback and descending drive to human hopping. J Physiol. 588 (Pt 5), 799-807 (2010).
  35. Konrad, P. . The ABC of EMG: A practical introduction to kinesiological electromyography. , (2005).
  36. Roshan, L., Paradiso, G. O., Chen, R. Two phases of short-interval intracortical inhibition. Exp Brain Res. 151 (3), 330-337 (2003).
  37. Kojima, S., et al. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation. BMC Neurosci. 14, 43 (2013).
  38. McNevin, N., Shea, C. H., Wulf, G. Increasing the distance of an external focus of attention enhances learning. Psychol Res. 67 (1), 22-29 (2003).
  39. Hummel, F. C., et al. Deficient intracortical inhibition (SICI) during movement preparation after chronic stroke. Neurology. 72 (20), 1766-1772 (2009).
  40. Mall, V., et al. Low level of intracortical inhibition in children shown by transcranial magnetic stimulation. Neuropediatrics. 35 (2), 120-125 (2004).
  41. Walther, M., et al. Maturation of inhibitory and excitatory motor cortex pathways in children. Brain Dev. 31 (7), 562-567 (2009).
  42. van de Laar, M. C., van den Wildenberg, W. P., van Boxtel, G. J., Huizenga, H. M., van der Molen, M. W. Lifespan changes in motor activation and inhibition during choice reactions: a Laplacian ERP study. Biol Psychol. 89 (2), 323-334 (2012).
  43. Papegaaij, S., Taube, W., Baudry, S., Otten, E., Hortobagyi, T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci. 6 (28), (2014).
  44. Kwong, K. K., et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 89 (12), 5675-5679 (1992).
  45. Ziemann, U., Rothwell, J. C., Ridding, M. C. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol. 496 (Pt 3), 873-881 (1996).
  46. Petersen, N. T., et al. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol. 537 (Pt 2), 651-656 (2001).
  47. Butler, J. E., Larsen, T. S., Gandevia, S. C., Petersen, N. T. The nature of corticospinal paths driving human motoneurones during voluntary contractions. J Physiol. 584 (Pt 2), 651-659 (2007).
  48. Ortu, E., Deriu, F., Suppa, A., Tolu, E., Rothwell, J. C. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol. 586 (21), 5147-5159 (2008).
  49. Roy, F. D. Suppression of EMG activity by subthreshold paired-pulse transcranial magnetic stimulation to the leg motor cortex. Exp Brain Res. 193 (3), 477-482 (2009).
  50. Di Lazzaro, V., et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 111 (5), 794-799 (2000).
  51. Classen, J., Benecke, R. Inhibitory phenomena in individual motor units induced by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 97 (5), 264-274 (1995).
  52. Binkofski, F., et al. Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action. J Neurophysiol. 88 (1), 514-519 (2002).
  53. Strafella, A. P., Paus, T. Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. J Neurophysiol. 85 (6), 2624-2629 (2001).
  54. Hunter, S. K., McNeil, C. J., Butler, J. E., Gandevia, S. C., Taylor, J. L. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Exp Brain Res. 234 (9), 2541-2551 (2016).
  55. Zimmermann, K., et al. Neural Correlates of Switching Attentional Focus during Finger Movements: An fMRI Study. Front Psychol. 3 (555), (2012).

Play Video

Cite This Article
Kuhn, Y., Keller, M., Ruffieux, J., Taube, W. Intracortical Inhibition Within the Primary Motor Cortex Can Be Modulated by Changing the Focus of Attention. J. Vis. Exp. (127), e55771, doi:10.3791/55771 (2017).

View Video