Summary

心脏重构通过大鼠腹主动脉缩窄的模型

Published: December 02, 2016
doi:

Summary

A rat model of abdominal aortic constriction that induces cardiac hypertrophy and remodeling is described. An efficient, highly-reproducible, and minimally-invasive method is used to provide a simple yet useful platform for research in myocardial hypertrophy and dysfunction.

Abstract

Heart failure is one of the leading causes of death worldwide. It is a complex clinical syndromethat includes fatigue, dyspnea, exercise intolerance, and fluid retention. Changes in myocardial structure, electrical conduction, and energy metabolism develop with heart failure, leading to contractile dysfunction, increased risk of arrhythmias, and sudden death. Hypertensive heart disease is one of the key contributing factors of cardiac remodeling associated with heart failure. The most commonly-used animal model mimicking hypertensive heart disease is created via surgical interventions, such as by narrowing the aorta. Abdominal aortic constriction is a useful experimental technique to induce a pressure overload, which leads to heart failure. The surgery can be easily performed, without the need for chest opening or mechanical ventilation. Abdominal aortic constriction-induced cardiac pathology progresses gradually, making this model relevant to clinical hypertensive heart failure. Cardiac injury and remodeling can be observed 10 weeks after the surgery. The method described here provides a simple and effective approach to produce a hypertensive heart disease animal model that is suitable for studying disease mechanisms and for testing novel therapeutics.

Introduction

心脏衰竭是一种复杂的临床综合征,其中包括疲劳,呼吸困难症状,运动耐受力,和体液潴留在外围组织。它是死亡的发达国家1的首要原因。除了引起的肌节蛋白质或离子通道2突变遗传性心肌病,心肌功能障碍可以通过各种医学病症,包括高血压,心脏瓣膜疾病,肥胖和糖尿病3引起的。在心肌结构,电传导,和能量代谢导致心脏泵送能力不足的变化,以满足循环的要求,最终导致心脏衰竭3,4。调查心脏衰竭背后的机制,因此,是在心血管领域的研究非常重要。识别导致心脏衰竭恶化的分子机制,最终可以帮助在新的治疗目标的或有用的生物标记物的发现<s达> 1。因此,开发出与人类5心脏衰竭共享关键临床特征心脏衰竭的动物模型非常重要的。

心脏肥大和重塑起着心脏衰竭的发展中起关键作用。高血压心脏疾病是心肌肥厚和人类患者1所示的适应不良重塑的关键因素。模仿这些人类的条件下,动物模型通常通过外科手术成立。特别是,在横向或腹主动脉可以收缩,以增加对左心室,这最终导致在心脏的压力超负荷的阻力。这种现象通常导致心脏肥大,心肌细胞的一生理补偿,以满足对心血管系统的功能需求。然而,功能需求覆盖了正常的生理代偿机制,导致心肌纤维化和承包商瓷砖损害。横向主动脉缩窄(TAC)手术往往涉及复杂的程序,包括开胸,机械通气和胸腺分离和脂肪组织从主动脉弓。相比之下,腹主动脉缩窄,需要简单的实验技术6-8。腹主动脉,在左右肾动脉之间,是在手术过程中收缩。心肌肥厚和重塑可在腹主动脉缩窄手术后6-8可以观察到几个星期;它们产生类似于由横向主动脉缩窄术9,10-生成健壮高血压心脏疾病。在这里,我们描述了一种协议使用高效的,高度可再现的,和微创方法大鼠进行腹主动脉缩窄。邻近肾动脉腹主动脉通过由4-0丝线形成的0.72毫米环收缩。手术,心脏肥大和remodelin十周后g的被观察到。腹主动脉缩窄致心肌肥大的大鼠模型为研究疾病机理与病理生理学,以及潜在疗法的发展平台。

Protocol

所有的动物实验均按照指南实验动物的护理和使用,卫生的美国国立卫生研究院公布(NIH公开号85-23,1996年修订)进行。该协议被批准,并按照规定设置的机构动物护理和使用委员会台大的准则。 1.动物手术通过钝的针尖上的珩磨石制备22克的注射器针头。使用钳子,折扇针直角。 手术前,准备所需的手术器械和材料,以及作为恢复笼。使用前高压灭菌所有仪?…

Representative Results

腹主动脉缩窄手术10周后,将得到的心肌病理分析。心脏组织学是通过计算心脏重量的体重的比率,并通过在心脏检测胶原蛋白的量来测量。心脏损伤,通过测定血浆心肌肌钙蛋白浓度证实。 如在图1A中所示,心脏大小腹主动脉缩窄手术后放大,由更高心脏重量到体重比( 图1B),心脏肥大的指标作为…

Discussion

Hypertensive heart disease, a major health problem that contributes greatly to morbidity and mortality, can lead to cardiac hypertrophy and heart failure5. The pathogenesis and progression of hypertensive heart disease in humans is complex, so an appropriate animal model is critical to investigate the underlying mechanisms and to test novel therapeutics that aim to improve cardiac structure and function5. The abdominal aortic constriction model, which simulates chronic heart disease, is an effective…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors’ work was supported by a grant from Ministry of Science and Technology (MOST 103-2320-B-002-068-MY2), the National Health Research Institute (NHRI-EX104-10418SC), and National Taiwan University (NTU 104R4000).

Materials

22-Gauge syringe needle                          BD Biosciences            309572
EDTA Blood Collection Tubes    BD Biosciences            REF365974
4-0 silk suture                           Sharpoint™ Products                    DC-2515N
6-0 silk suture                           Sharpoint™ Products                    DC-2150N
Pentobarbital                            Sigma Aldrich                               1507002
Paraformaldehyde                     Sigma Aldrich                              441244
Acetaminophen Sigma Aldrich                              A7085
Picrosirius red solution              Abcam                                         ab150681
Cardiac troponin kit                   Abcam                                         ab200016
Imagequant Molecular Dynamics
Langendorff                              ADInstruments                             ML870B2

References

  1. Houser, S. R., et al. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res. 111, 131-150 (2012).
  2. Towbin, J. A. Inherited cardiomyopathies. Circ J. 78, 2347-2356 (2014).
  3. Breckenridge, R. Heart failure and mouse models. Dis Model Mech. 3, 138-143 (2010).
  4. van Bilsen, M., van Nieuwenhoven, F. A., van der Vusse, G. J. Metabolic remodelling of the failing heart: beneficial or detrimental?. Cardiovasc Res. 81, 420-428 (2009).
  5. Patten, R. D., Hall-Porter, M. R. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2, 138-144 (2009).
  6. Gu, W. L., Chen, C. X., Huang, X. Y., Gao, J. P. The effect of angoroside C on pressure overload-induced ventricular remodeling in rats. Phytomedicine. 22, 705-712 (2015).
  7. Zhang, Y., et al. Alteration of cardiac ACE2/Mas expression and cardiac remodelling in rats with aortic constriction. Chin J Physiol. 57, 335-342 (2014).
  8. Tardif, K., et al. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat. Am J Physiol Heart Circ Physiol. 308, H1265-H1274 (2015).
  9. Li, C., et al. Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice. PLoS One. 9, e110950 (2014).
  10. Ku, H. C., Su, M. J. DPP4 deficiency preserved cardiac function in abdominal aortic banding rats. PLoS One. 9, e85634 (2014).
  11. Lee, S. Y., et al. Caffeic acid ethanolamide prevents cardiac dysfunction through sirtuin dependent cardiac bioenergetics preservation. J Biomed Sci. 22, 80 (2015).
  12. Gs, A. K., Raj, B., Santhosh, K. S., Sanjay, G., Kartha, C. C. Ascending aortic constriction in rats for creation of pressure overload cardiac hypertrophy model. J Vis Exp. , e50983 (2014).
  13. deAlmeida, A. C., van Oort, R. J., Wehrens, X. H. Transverse aortic constriction in mice. J Vis Exp. , e1729 (2010).
  14. Schaefer, A., et al. A New Animal Model for Investigation of Mechanical Unloading in Hypertrophic and Failing Hearts: Combination of Transverse Aortic Constriction and Heterotopic Heart Transplantation. PLoS One. 11, e0148259 (2016).
  15. Rodriguez-Iturbe, B., Quiroz, Y., Kim, C. H., Vaziri, N. D. Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidneys. Am J Hypertens. 18, 1449-1456 (2005).
  16. Ku, H. C., Lee, S. Y., Yang, K. C., Kuo, Y. H., Su, M. J. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart. PLoS One. 11, e0148545 (2016).
  17. Bovill, J. G. Intravenous anesthesia for the patient with left ventricular dysfunction. Semin Cardiothorac Vasc Anesth. 10, 43-48 (2006).
  18. Inoko, M., Kihara, Y., Morii, I., Fujiwara, H., Sasayama, S. Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol. 267, H2471-H2482 (1994).
  19. Heyen, J. R., et al. Structural, functional, and molecular characterization of the SHHF model of heart failure. Am J Physiol Heart Circ Physiol. 283, H1775-H1784 (2002).

Play Video

Cite This Article
Ku, H., Lee, S., Wu, Y. A., Yang, K., Su, M. A Model of Cardiac Remodeling Through Constriction of the Abdominal Aorta in Rats. J. Vis. Exp. (118), e54818, doi:10.3791/54818 (2016).

View Video