Summary

의 강성 측정<em> 전의 VIVO</em원자 힘 현미경을 사용하여> 마우스 대동맥

Published: October 19, 2016
doi:

Summary

We present detailed protocols for isolation of aortas from mouse and measurement of their elastic modulus using atomic force microscopy.

Abstract

동맥 경직은 중요한 위험 인자 및 심혈관 질환 바이오 마커 및 노화의 특징이다. 원자력 현미경 (AFM)은 하드 (플라스틱, 유리, 금속 등)의 임의의 기판 위에 세포 표면에 이르기까지 다양한 재료에 대한 점탄성 기계적 성질을 특성화하기위한 다용도 분석 도구이다. 널리 세포의 강성을 측정하는 데 사용되지만 자주 대동맥의 강성을 측정하는 데 사용되었다. 본 논문에서는 무부하 마우스 동맥의 생체 탄성 계수를 측정하기 위해 접촉 모드 AFM을 사용하기위한 절차를 설명합니다. 우리는 마우스 대동맥의 분리를 위해 우리의 절차를 설명하고 AFM 분석에 대한 자세한 정보를 제공합니다. 이것은 레이저 빔의 배향, 스프링 상수 및 AFM 프로브의 편향 감도를 교정 한 힘 곡선 취득 단계가 설명되어있다. 우리는 또한 데이터 analy에 대한 자세한 프로토콜을 제공힘 곡선의 동생.

Introduction

The biomechanical properties of arteries are a critical determinant in cardiovascular disease (CVD) and aging. Arterial stiffness, a major cholesterol independent risk factor and an indicator for the progression of CVD, increases with vascular injury, atherosclerosis, age, and diabetes1-8. Arterial wall stiffening is associated with increased dedifferentiation, migration, and proliferation of vascular smooth muscle cells9-12. In addition, increased arterial stiffness has been linked to enhanced macrophage adhesion1, endothelial permeability and leukocyte transmigration13, and vessel wall remodeling14,15. Thus, therapies that could prevent arterial stiffening in CVD or aging might complement currently available pharmacological interventions that treat CVD by reducing high blood cholesterol.

AFM is a powerful analytical tool used for various physical and biological applications. AFM is increasingly used to obtain the high-resolution images and characterize the biomechanical properties of soft biological samples such as tissues and cells1,2,10,16,17 with a great degree of accuracy at nanoscale levels. A major advantage of AFM is the fact that it can be used with living cells.

This paper describes our method for measuring the elastic modulus of mouse arteries ex vivo using AFM. The described method shows how we 1) properly isolate mouse arteries (descending aorta and aortic arch) and 2) measure the elastic modulus of these tissues by AFM. Measurements of unloaded elastic moduli in arteries can help to elucidate changes in the extracellular matrix (ECM) that occur in response to vascular injury, CVD, and aging.

Protocol

이 연구에서 동물 연구는 펜실베니아 대학의 기관 동물 관리 및 사용위원회에 의해 승인되었다. 방법들은 승인 된 지침에 따라 수행 하였다. 1. 마우스 및 대동맥의 분리 준비 복강 – (2 밀리그램 / kg 일) – (- 100 ㎎ / ㎏ 80), 자일 라진 (8-10 ㎎ / ㎏) 및 케타민 아세 프로 마진을 가진 마우스를 마취. 꼬리 핀치 테스트와 마취를 확인합니다. 마우스가 완전 마취 후에 경부 전…

Representative Results

도 5a는 6 개월, 남성 C57BL / 6 마우스에서 하강 (흉부) 대동맥의 위상 콘트라스트 이미지를 보여줍니다. AFM 캔틸레버 직접 조직 위의 자리에 들여 쓰기를위한 준비.도 5b 및도 5c는 접촉 모드 AFM 들여 쓰기에 의해 얻어진 대표 힘 곡선을 보여줍니다. 도 5b 및도 5c에 도시 된 그린 선 구체 대한 헤르츠 모델을 이용하여 얻어지는 최적 ?…

Discussion

AFM 압입은 세포 및 조직의 강성 (탄성 계수)을 특성화하는데 사용될 수있다. 본 논문에서는 마우스의 하행 대동맥과 대동맥 궁을 분리하고이 동맥 영역 생체의 탄성 계수를 결정하는 자세한 단계별 프로토콜을 제공합니다. 우리는 지금 요약하고이 문서에 설명 된 방법의 기술적 인 문제 및 제한 사항에 대해 설명합니다.

몇 가지 기술적 인 문제는 고립과 자신의 작고 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

AFM analysis was performed on instrumentation supported by the Pennsylvania Muscle Institute and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, the University of Pennsylvania. This work was supported by NIH grants HL62250 and AG047373. YHB was supported by post-doctoral fellowship from the American Heart Association.

Materials

BioScope Catalyst AFM system Bruker
Nikon Eclipse TE 200 inverted microscope Nikon Instruments
Silicon nitride AFM probe Novascan Technologies PT.SI02.SN.1 0.06 N/m cantilever; 1 µm SiO2 particle
Dumont #5 forceps Fine Science Tools 11251-10 See section 1.4
Dumont #5SF forceps Fine Science Tools 11252-00 See section 1.8
Fine Scissors-ToughCut Fine Science Tools 14058-11 See section 1.4 (medium sized)
Vannas-Tübingen spring scissors Fine Science Tools 15008-08 See section 1.6 (small sized)
60mmTC-treated cell culture dish Corning 353004
Dulbecco's Phosphate-Buffered Saline, 1X Corning 21-031-CM Without calcium and magnesium
Krazy Glue instant all purpose liquid Krazy Glue KG58548R See section 2.2
Gel-loading tips, 1-200 µL Fisher 02-707-139 See section 2.2
Tip Tweezers Electron Microscopy Sciences 78092-CP See section 3.2
50-mm, clear wall glass bottom dishes TED PELLA 14027-20 See section 4.4

References

  1. Kothapalli, D., et al. Cardiovascular Protection by ApoE and ApoE-HDL Linked to Suppression of ECM Gene Expression and Arterial Stiffening. Cell Rep. 2, 1259-1271 (2012).
  2. Liu, S. -. L., et al. Matrix metalloproteinase-12 is an essential mediator of acute and chronic arterial stiffening. Sci Rep. 5, 17189 (2015).
  3. Lakatta, E. G. Central arterial aging and the epidemic of systolic hypertension and atherosclerosis. J Am Soc Hypertens. 1, 302-340 (2007).
  4. Stehouwer, C. D. A., Henry, R. M. A., Ferreira, I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 51, 527-539 (2008).
  5. Steppan, J., Barodka, V., Berkowitz, D. E., Nyhan, D. Vascular Stiffness and Increased Pulse Pressure in the Aging Cardiovascular System. Cardiol Res Pract. 2011, 263585 (2011).
  6. Duprez, D. A., Cohn, J. N. Arterial stiffness as a risk factor for coronary atherosclerosis. Curr Atheroscler Rep. 9, 139-144 (2007).
  7. Mitchell, G. F., et al. Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study. Circulation. 121, 505-511 (2010).
  8. Sutton-Tyrrell, K., et al. Elevated Aortic Pulse Wave Velocity, a Marker of Arterial Stiffness, Predicts Cardiovascular Events in Well-Functioning Older Adults. Circulation. 111, 3384-3390 (2005).
  9. Klein, E. A., et al. Cell-Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening. Curr Biol. 19, 1511-1518 (2009).
  10. Bae, Y. H., et al. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci signal. 7, ra57 (2014).
  11. Thyberg, J., Hedin, U., Sjölund, M., Palmberg, L., Bottger, B. A. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arterioscler Thromb Vasc Biol. 10, 966-990 (1990).
  12. Owens, G. K., Kumar, M. S., Wamhoff, B. R. Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiol Rev. 84, 767-801 (2004).
  13. Huynh, J., et al. Age-Related Intimal Stiffening Enhances Endothelial Permeability and Leukocyte Transmigration. Sci Transl Med. 3, 112ra122 (2011).
  14. Safar, M. E., Levy, B. I., Struijker-Boudier, H. Current Perspectives on Arterial Stiffness and Pulse Pressure in Hypertension and Cardiovascular Diseases. Circulation. 107, 2864-2869 (2003).
  15. Raffetto, J. D., Khalil, R. A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 75, 346-359 (2008).
  16. Muller, D. J., Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol. 3, 261-269 (2008).
  17. Hsu, B. Y., Bae, Y. H., Mui, K. L., Liu, S. -. L., Assoian, R. K. Apolipoprotein E3 Inhibits Rho to Regulate the Mechanosensitive Expression of Cox2. PLoS ONE. 10, e0128974 (2015).
  18. Johnson, K. L., Kendall, K., Roberts, A. D. Surface Energy and the Contact of Elastic Solids. Proc R Soc Lond A. 324, 301-313 (1971).
  19. Derjaguin, B. V., Muller, V. M., Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 53, 314-326 (1975).
  20. Hutter, J. L., Bechhoefer, J. Calibration of atomic-force microscope tips. Rev Sci Instrum. 64, 1868-1873 (1993).
  21. Pries, A. R., Secomb, T. W., Gaehtgens, P. The endothelial surface layer. Pflugers Arch EJP. 440, 653-666 (2000).
  22. Pogoda, K., et al. Depth-sensing analysis of cytoskeleton organization based on AFM data. Eur Biophys J. 41, 79-87 (2012).
  23. Mendez, M. G., Restle, D., Janmey, P. A. Vimentin Enhances Cell Elastic Behavior and Protects against Compressive Stress. Biophys J. 107, 314-323 (2014).
  24. Moreno-Flores, S., Benitez, R., Md Vivanco, ., Toca-Herrera, J. L. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components. Nanotechnology. 21, 445101 (2010).
  25. Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech. 41, 454-464 (2008).
  26. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R. S. Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope. Biophys J. 82, 2798-2810 (2002).
  27. Mahaffy, R. E., Shih, C. K., MacKintosh, F. C., Käs, J. Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells. Phys Rev Lett. 85, 880-883 (2000).
  28. Amin, M., Le, V. P., Wagenseil, J. E. Mechanical Testing of Mouse Carotid Arteries: from Newborn to Adult. J Vis Exp. , e3733 (2012).
  29. Laurent, S., et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 27, 2588-2605 (2006).
  30. Plodinec, M., et al. The nanomechanical signature of breast cancer. Nat Nano. 7, 757-765 (2012).
  31. Raman, A., et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat Nano. 6, 809-814 (2011).

Play Video

Cite This Article
Bae, Y. H., Liu, S., Byfield, F. J., Janmey, P. A., Assoian, R. K. Measuring the Stiffness of Ex Vivo Mouse Aortas Using Atomic Force Microscopy. J. Vis. Exp. (116), e54630, doi:10.3791/54630 (2016).

View Video