Summary

박테리아, 곤충 세포 및 공장 시스템 : 재조합 단백질 다른 Biofactories에서 표현의 비교 분석

Published: March 23, 2015
doi:

Summary

In this study the expression of a target human recombinant protein in different production platforms was compared. We focused on traditional fermenter-based cultures and on plants, describing the set-up of each system and highlighting, on the basis of the reported results, the inherent limits and advantages for each platform.

Abstract

식물 – 기반 시스템은 높은 품질의 생체 활성 제품의가요 성, 저비용 생산을 위해 자신의 잘 문서화 전위의 결과로 재조합 단백질의 생산에 유용한 플랫폼 여겨진다.

본 연구에서 우리는 과도하고 안정적​​인 식물 기반 발현 시스템, 전통적인 발효기 계 세포 배양 (세균성 및 곤충)에서 표적 재조합 인간 단백질의 발현을 비교 하​​였다.

각 플랫폼을 위해, 우리는 셋업, 최적화 및 제조 공정의 길이, 최종 제품의 품질과 수율을 설명하고 우리는 선택된 대상 재조합 단백질에 특이 잠정 생산 비용을 평가 하였다.

전반적으로, 우리의 결과는 박테리아 인해 불용성 봉입체 내에서 축적 목적 단백질의 생산에 적합하지 않은 것을 나타낸다. 한편, 식물 기반 시스템은 다목적 플랫폼 t는모자 배큘로 바이러스 / 곤충 세포 시스템보다 낮은 비용으로 선택된 단백질의 생산을 허용한다. 특히, 안정된 형질 전환 라인은 최종 생성물의 높은 수율 및 과도 발현하는 식물 빠른 프로세스 개발을 표시. 그러나, 모든 재조합 단백질은 식물 기반 시스템의 혜택을 누릴 수 있지만, 여기에 설명 된대로 최고의 생산 플랫폼, 사례 별 접근 방식을 경험적으로 결정되어야한다.

Introduction

Recombinant proteins are commercially mass-produced in heterologous expression systems with the aid of emerging biotechnology tools. Key factors that have to be considered when choosing the heterologous expression system include: protein quality, functionality, process speed, yield and cost.

In the recombinant protein field, the market for pharmaceuticals is expanding rapidly and, consequently, most biopharmaceuticals produced today are recombinant. Proteins can be expressed in cell cultures of bacteria, yeasts, molds, mammals, plants and insects, as well as in plant systems (either via stable- or transient-transformation) and transgenic animals; each expression system has its inherent advantages and limitations and for each target recombinant protein the optimal production system has to be carefully evaluated.

Plant-based platforms are arising as an important alternative to traditional fermenter-based systems for safe and cost-effective recombinant protein production. Although downstream processing costs are comparable to those of microbial and mammalian cells, the lower up-front investment required for commercial production in plants and the potential economy of scale, provided by cultivation over large areas, are key advantages.

We evaluated plants as bioreactors for the expression of the 65 kDa isoform of human glutamic acid decarboxylase (hGAD65), one of the major autoantigen in Type 1 autoimmune diabetes (T1D). hGAD65 is largely adopted as a marker, both for classifying and monitoring the progression of the disease and its role in T1D prevention is currently under investigation in clinical trials. If these trials are successful, the global demand for recombinant hGAD65 will increase dramatically.

Here, we focus on the expression of the enzymatically inactive counterpart of hGAD65, hGAD65mut, a mutant generated by substituting the lysine residue that binds the cofactor PLP (pyridoxal-5′-phosphate) with an arginine residue (K396R)1.

hGAD65mut retains its immunogenicity and, in plant and insect cells, accumulates up to ten-fold higher than hGAD65, its wild-type counterpart. It was hypothesized that the enzymatic activity of hGAD65 interferes with plant cell metabolism to such an extent that it suppresses its own synthesis, whereas hGAD65mut, the enzymatically-inactive form, can be accumulated in plant cells to higher levels.

For the expression of hGAD65mut, the use of different technologies, widely used in plant biotechnology, was explored here and compared to traditional expression platforms (Escherichia coli and Baculovirus/insect cell-based).

In this work, the recombinant platforms developed for the expression of hGAD65mut comprising traditional and plant-based systems were reviewed and compared on the basis of process speed and yield, and of final product quality and functionality.

Protocol

발현 벡터의 1. 건설 상용 재조합 클로닝 시스템 : 앞서 설명한 바와 같이 2 프라이머는 적절한 유전자의 5 '말단에서 CACC 클램프의 첨가를 허용와 표적 유전자 (hGAD65mut)의 전체 길이의 서열을 증폭. 1 몰비 인서트 : 벡터 및 1 μL의 1.5을 사용하여, 6 μL의 총 부피의 반응을 조합하여 엔트리 벡터 (토포 이소 머라 바운드)에서 지향성 클로닝 키트 규격에있어서, 겔 – 정?…

Representative Results

다른 생산 시스템의 목표 재조합 단백질의 이종 발현을위한 실험 설계는 여기에 설명되어 있습니다. 제 1 초점 각 시스템에서 목적 단백질의 발현을 위해 최적의 조건을 설정함으로써 다른 플랫폼의 셋업이다. 표적 단백질의 발현 hGAD65mut는 E. 중으로 유도 하였다 대장균 문화. 37 ° C에서 3 시간의 발현 후, 균체를 원심 분리에 의해 수집하고, 초음파 처리에 의해 …

Discussion

박테리아 세포, 배큘로 바이러스 / 곤충 세포 및 식물 : 본 연구에서는 세 가지 플랫폼은 재조합 인간 단백질의 발현을 비교 하​​였다. (- MagnICON 및 pK7WG2 기반 – 안정적인 즉, 과도) 식물 기반 플랫폼은 더 세 널리 사용되는 표현 기술을 이용하여 탐구 하였다. 이 실험 hGAD65mut 위해 선택된 표적 단백질은 이전에 다른 시스템 (13)으로 표현되었고, 그것의 생산 및 기능은 쉽게 검출 및 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the COST action ‘Molecular pharming: Plants as a production platform for high-value proteins’ FA0804. The Authors thank Dr Anatoli Giritch and Prof. Yuri Gleba for providing the MagnICON vectors for research purposes.

Materials

Yeast extract Sigma  Y1333 
Tryptone  Formedium  TRP03 
Agar Bacteriological Grade  Applichem  A0949 
Sf-900 II SFM medium Gibco  10902-088
Grace’s Insect Medium, unsupplemented  Gibco  11595-030 
Cellfectin II Reagent Invitrogen 10362-100
MS medium including vitamins Duchefa Biochemie  M0222
Sucrose Duchefa Biochemie  S0809
Plant agar Duchefa Biochemie  P1001
Ampicillin sodium Duchefa Biochemie  A0104 Toxic
Gentamycin sulphate Duchefa Biochemie  G0124 Toxic
Ganciclovir Invitrogen I2562-023
Carbenicillin disodium Duchefa Biochemie  C0109 Toxic 
Kanamycin sulfate Sigma K4000 Toxic 
Rifampicin Duchefa Biochemie  R0146 Toxic – 25 mg/ml stock in DMSO
Streptomycin  sulfate Duchefa Biochemie  S0148 Toxic 
Spectinomycin  dihydrochloride  Duchefa Biochemie  S0188
IPTG (Isopropil-β-D-1-tiogalattopiranoside)  Sigma  I5502  Toxic 
MES hydrate Sigma M8250
MgCl2  Biochemical 436994U
Acetosyringone  Sigma D134406 Toxic – 0.1 M stock in DMSO
Syringe (1 ml) Terumo
MgSO4  Fluka  63136
BAP                                                       (6-Benzylaminopurine)  Sigma  B3408  Toxic 
NAA (Naphtalene acetic acid)  Duchefa Biochemie  N0903  Irritant 
Cefotaxime  Mylan generics 
Trizma base Sigma T1503 Adjust pH with 1 N HCl to make Tris-HCl buffer
HCl  Sigma H1758 Corrosive 
NaCl Sigma S3014 1 M stock
KCl Sigma P9541
Na2HPO4 Sigma S7907
KH2PO4 Sigma P9791
PMSF (Phenylmethanesulfonylfluoride) Sigma P7626 Corrosive,  toxic
Urea Sigma U5378
β-mercaptoethanol  Sigma M3148 Toxic 
Tween-20 Sigma P5927
Hepes Sigma H3375
DTT (Dithiothreitol)  Sigma D0632 Toxic – 1 M stock, store at -20 °C
CHAPS Duchefa Biochemie  C1374 Toxic 
Plant protease inhibitor cocktail Sigma P9599 Do not freeze/thaw too many times
SDS (Sodium dodecyl sulphate) Sigma L3771 Flammable, toxic, corrosive – 10% stock
Glycerol Sigma G5516
Brilliant Blue R-250 Sigma B7920
Isopropanol Sigma 24137 Flammable
Acetic acid Sigma 27221 Corrosive
Anti-Glutamic acid decarboxylase 65/67 Sigma G5163 Do not freeze/thaw too many times
Horseradish peroxidase (HRP)-conjugate anti-rabbit antibody Sigma A6154 Do not freeze/thaw too many times
Sf9 Cells Life Technologies 11496
BL21 Competent E.coli New England Biolabs C2530H
Protein A Sepharose Sigma P2545
Cell culture plates  Sigma CLS3516
Radio Immuno Assay kit Techno Genetics 12650805 Radioactive material 

References

  1. Hampe, C. S., Hammerle, L. P., Falorni, A., Robertson, J., Lernmark, A. Site-directed mutagenesis of K396R of the 65 kDa glutamic acid decarboxylase active site obliterates enzyme activity but not antibody binding. FEBS Lett. 488 (3), 185-189 (2001).
  2. Avesani, L., et al. Recombinant human GAD65 accumulates to high levels in transgenic tobacco plants when expressed as an enzymatically inactive mutant. Plant Biotechnol. J. 9 (8), 862-872 (2010).
  3. Sambrook, J., et al. . Molecular Cloning: A laboratory manual. Second Edition. , (1989).
  4. Avesani, L., et al. Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Transgenic Res. 23, 281-291 (2014).
  5. Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., Gleba, Y. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. (USA). 101 (18), 6852-6857 (2004).
  6. Gleba, Y., Klimyuk, V., Marillonnet, S. Viral vectors for the expression of proteins in plants). Curr. Opin. Biotechnol. 18, 134-141 (2007).
  7. Engler, C., Kandzia, R., Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 3 (11), (2008).
  8. Xu, R., Li, Q. Q. Protocol: streamline cloning of genes into binary vectors in Agrobacterium via the Gateway TOPO vector system. Plant Methods. 4 (4), 1-7 (2008).
  9. Fairbanks, G., Steck, T. L., Wallach, D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 10 (13), 2606-2617 (1971).
  10. Falorni, A., et al. Radioimmunoassay detects the frequent occurrence of autoantibodies to the Mr 65,000 isoform of glutamic acid decarboxylase in Japanese insulin-dependent diabetes. Autoimmunity. 19, 113-125 (1994).
  11. Hunt, I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr. Purif. 40 (1), 1-22 (2005).
  12. Arzola, L., et al. Transient co-expression of post-transcriptional silencing suppressor for increased in planta expression of a recombinant anthrax receptor fusion protein. Int. J. Mol. Sci. 12 (8), 4975-4990 (2011).
  13. Merlin, M., Gecchele, E., Capaldi, S., Pezzotti, M., Avesani, L. Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed. Res. Int. 2014, 136419 (2014).
  14. Avesani, L., et al. Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Res. 12 (2), 203-212 (2003).
  15. Leuzinger, K., et al. Efficient agroinfiltration of Plants for high-level transient expression of recombinant proteins. J Vis Exp. (77), (2013).

Play Video

Cite This Article
Gecchele, E., Merlin, M., Brozzetti, A., Falorni, A., Pezzotti, M., Avesani, L. A Comparative Analysis of Recombinant Protein Expression in Different Biofactories: Bacteria, Insect Cells and Plant Systems. J. Vis. Exp. (97), e52459, doi:10.3791/52459 (2015).

View Video