Summary

Quantification of the Immunosuppressant Tacrolimus on Dried Blood Spots Using LC-MS/MS

Published: November 08, 2015
doi:

Summary

Here we describe a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay to quantify the immunosuppressant tacrolimus in dried blood spots using a simple manual protein precipitation step and online column extraction.

Abstract

The calcineurin inhibitor tacrolimus is the cornerstone of most immunosuppressive treatment protocols after solid organ transplantation in the United States. Tacrolimus is a narrow therapeutic index drug and as such requires therapeutic drug monitoring and dose adjustment based on its whole blood trough concentrations. To facilitate home therapeutic drug and adherence monitoring, the collection of dried blood spots is an attractive concept. After a finger stick, the patient collects a blood drop on filter paper at home. After the blood is dried, it is mailed to the analytical laboratory where tacrolimus is quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in combination with a simple manual protein precipitation step and online column extraction.

For tacrolimus analysis, a 6-mm disc is punched from the saturated center of the blood spot. The blood spot is homogenized using a bullet blender and then proteins are precipitated with methanol/0.2 M ZnSO4 containing the internal standard D2,13C-tacrolimus. After vortexing and centrifugation, 100 µl of supernatant is injected into an online extraction column and washed with 5 ml/min of 0.1 formic acid/acetonitrile (7:3, v:v) for 1 min. Hereafter, the switching valve is activated and the analytes are back-flushed onto the analytical column (and separated using a 0.1% formic acid/acetonitrile gradient). Tacrolimus is quantified in the positive multi reaction mode (MRM) using a tandem mass spectrometer.

The assay is linear from 1 to 50 ng/ml. Inter-assay variability (3.6%-6.1%) and accuracy (91.7%-101.6%) as assessed over 20 days meet acceptance criteria. Average extraction recovery is 95.5%. There are no relevant carry-over, matrix interferences and matrix effects. Tacrolimus is stable in dried blood spots at RT and at +4 °C for 1 week. Extracted samples in the autosampler are stable at +4 °C for at least 72 hr.

Introduction

Tacrolimus is a potent immonosuppressant1-7 that has a macrolide structure8 (Figure 1). Due to cistrans isomerism of the C-N bonds it forms two rotamers in solution9 that can be separated by reversed phase high-performance liquid chromatography (HPLC) Tacrolimus is lipophilic and soluble in alcohols (methanol: 653 g/L, ethanol: 355 g/L), halogenated hydrocarbons (chloroform: 573 g/L) and ether. It is sparingly soluble in aliphatic hydrocarbons (hexane: 0.1 g/L and water (pH 3: 0.0047 g/L)9. The molecule does not contain any chromophore and its UV-absorption maximum is 192 nm. Tacrolimus acts via inhibition of calcineurin. Its mechanism of action has been reviewed in references10,11. It is currently used in more than 80% of solid-organ transplant patients in the United States12.

The therapeutic index of tacrolimus is considered to be narrow13. In addition, the correlation between tacrolimus doses and blood concentrations is poor and pharmacokinetics is variable14,15. Therapeutic drug monitoring to guide tacrolimus dosing in transplant patients is therefore general clinical practice16-20. The goal is to keep the tacrolimus blood concentrations within a pre-defined therapeutic range. Tacrolimus blood concentrations below the therapeutic range may result in increased activity of chronic or acute allo-immune reactions, while concentrations above the therapeutic window increase the risk for over-immunosuppression, cancer and toxicities, such as nephrotoxicity, neurotoxicity, hypertension, and diabetes. High pharmacokinetic intra-individual variability of tacrolimus may be detrimental to both transplant organ and patient survival21,22. While inter-individual variability of tacrolimus pharmacokinetics is mainly caused by CYP3A5 polymorphisms, reasons for intra-individual variability include, but are not limited to, drug-drug, disease-drug and food-drug interactions14,15. Also lack of adherence to the immunosuppressive therapeutic drug regimen is a contributing factor and a major reason for graft loss23,24.

These considerations suggest that frequent home therapeutic drug and adherence monitoring of tacrolimus whole blood concentrations may be beneficial to ensure that patients have tacrolimus exposure within the desired therapeutic window at all times. However, the logistics and cost of more frequent therapeutic drug monitoring as it is current clinical practice15 is prohibitive. One of the reasons is that the patient has to see a phlebotomist to have the required venous blood sample drawn. Dried blood spots have recently emerged as an attractive concept25-28. After a simple finger stick the patient collects a blood drop on a special filter paper card and after the blood spot has dried, it can be mailed to a central laboratory for analysis of tacrolimus and any other immunosuppressant that the patient may currently be taking. This has become possible due to the development of highly sensitive and specific LC-MS/MS assays for the quantification of tacrolimus and other immunosuppressants in very small blood volumes such as dried blood spots (typically 20 µl of blood)25,29-43. Another advantage is that minimally invasive, low volume sample collection strategies such as dried blood spots greatly facilitate therapeutic drug monitoring and pharmacokinetic studies in small children28.

Tacrolimus is usually measured in venous EDTA whole blood15. Reasons are that tacrolimus extensively distributes into blood cells and that clinical studies have reported better correlation between tacrolimus trough concentrations in blood than in plasma with clinical events15,18. In comparison, the analysis of tacrolimus in dried blood spots is based on capillary blood that is mixed with the filter paper matrix. This presents challenges in terms of solubilization of tacrolimus and potential interferences with the LC-MS/MS analysis. Here we present an established and validated assay based on homogenization of the dried blood spot using a bullet blender in combination with a high-flow online column sample clean up procedure and LC-MS/MS analysis. As of today, this assay has successfully been used for the quantification of more than five thousand tacrolimus dried blood spot samples for adherence monitoring in clinical trials.

Protocol

De-identified blood samples from healthy individuals were from the University of Colorado Hospital (Aurora, Colorado). The use of de-identified blood bank samples for validation studies as well as for the preparation of calibrators and quality control samples was considered “exempt” by the Colorado Multi-institutional Review Board (COMIRB, Aurora, Colorado). 1. Preparation of References and Solutions Purchase tacrolimus and the internal standard D2,13</s…

Representative Results

Representative ion chromatograms of a blank sample, a sample spiked at the lower limit of quantification and a patient sample are shown in Figure 3. Calibration Curves The lower limit of detection was 0.5 ng/ml and the lower limit of quantification was 1.0 ng/ml. Fifty ng/ml was chosen as the highest calibrator as higher concentrations are unlikely to be reached in the clinic under normal circumstances. Calibration curves…

Discussion

Although, as aforementioned, the concept of therapeutic drug and adherence monitoring of tacrolimus based on dried blood spots is attractive, there are analytical challenges that go beyond those typically associated with the LC-MS/MS analysis of tacrolimus in venous EDTA whole blood samples. These include, but are not limited to, the fact that the matrix is capillary whole blood soaked into the cotton linters material of the filter card material used here and the low blood volume (20 µl). Nevertheless, high-throughp…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the United States Federal Drug Administration (FDA) contract HHSF223201310224C and the United States National Institutes of Health/FDA grant 1U01FD004573-01.

Materials

Reference Materials
Tacrolimus U.S. Pharmacopeial Convention 1642802
D2,13C-Tacrolimus Toronto Research Chemicals Inc. F370002
Test Materials
Red blood cells University of Colorado Hospital W20091305500 V
Plasma University of Colorado Hospital W2017130556300Q
Solvents
Acetone CHROMASOLV, HPLC, ≥ 99,9 % Sigma-Aldrich 439126-4 L
Acetonitrile Optima LC/ MS, UHPLC- UV Thermo Fisher Scientific A955-4
Isopropanol 99.9 %, HPLC Fisher Scientific BP2632-4
Methanol Optima LC/ MS Thermo Fisher Scientific A452-4
Water Optima LC/ MS, UHPLC- UV Thermo Fisher Scientific W6-4
Other Chemicals
Formic acid Thermo Fisher Scientific A118P-500
Phosphate-buffered saline (PBS) Sigma-Aldrich D8537
Zinc sulfate Thermo Fisher Scientific Z68-500
Laboratory Instruments and Consumables
0.5 – 10 µl pipet, VoluMate LIQUISYSTEMS Mettler Toledo 17008649
1,5 mL- Eppendorf tube Thermo Fisher Scientific 02-682-550
10 – 100 µL pipet, VoluMate LIQUISYSTEMS Mettler Toledo 17008651
10 μL- pipet tips with filter, sterile Neptune BT 10XLS3
100 – 1000 µl pipet, VoluMate LIQUISYSTEMS Mettler Toledo 17008653
100 μL- pipet tips with filter, sterile Neptune BT 100
1000 μL- pipet tips with filter, sterile Multimax 2940
2 – 20 µL pipet, VoluMate LIQUISYSTEMS Mettler Toledo 17008650
2 mL- Eppendorf tube Thermo Fisher Scientific 02-681-258
20 – 200 µL pipet, VoluMate LIQUISYSTEMS Mettler Toledo 17008652
20 μL- pipet tips with filter, sterile GeneMate P-1237-20
200 μL- pipet tips with filter Multimax 2938T
200 μL- pipet tips with filter, sterile Multimax 2936J
50 mL- Falcon tube BD Falcon 352070
300 μL inserts for  HPLC vials Phenomenex ARO-9973-13
Balance PR2002 Mettler Toledo 1117050723
Balances AX205 Delta Range Mettler Toledo 1119343379
Bullet Blender Homogenizer Next Advance BBX24
Centrifuge Biofuge Fresco Heraeus 290395
Disposable Wipes PDI Q55172
Glass v ials, 4 mL Thermo Fisher Scientific 14-955-334
Glass vials, 20 mL Thermo Fisher Scientific B7800-20
Gloves, nitrile Titan Brand Gloves 44-100S
HPLC vials, 9 mm, 2 mL, clear Phenomenex ARO- 9921-13
Lids for HPLC vials Phenomenex ARO- 8952-13-B
Needle, 18G 1.5 Precision Glide 305196
Rack for Eppendorf tubes Thermo Fisher Scientific 03-448-11
Rack for HPLC Vials Thermo Fisher Scientific 05-541-29
Steel beads 0.9 – 2 mm Next Advance SSB14B
Storage boxes for freezers / refrigerators Thermo Fisher Scientific 03-395-464
Standard multi-tube vortexer VWR Scientific Products 658816-115
Whatman Paper, 903 Protein Saver US 100/PK GE Whatman  2016-05
HPLC Equipment and Columns
Autosampler CTC PAL  PAL.HTCABIx1
Binary pump, Agilent 1260 Infinity Agilent Technologies 1260 G1312B
Binary pump, Agilent 1290 Infinity Agilent Technologies 1290 G4220A
Micro vacuum degasser, Agilent 1260 Agilent Technologies 1260 G13798
Column oven,  Agilent 1290 with 2 position  Agilent Technologies 1290 G1216C
Thermostated column compartment with integrated 6 port switching valve Agilent Technologies 1290 G1316C
HPLC pre-column cartridge, Zorbax XDB C8 (5 µm particle size), 4.6 · 12.5 mm Phenomenex 820950-926
HPLC analytical column, Zorbax Eclipse-XDB-C8 (5 µm particle size), 4.6 · 150 mm Phenomenex 993967-906
Tandem Mass Spectrometer
API5000 MS/MS with TurboIonspray source AB Sciex 4364257
Mass spectrometry software AB Sciex Analyst 1.5.1

References

  1. Goto, T., et al. Discovery of FK506, a novel immunosuppressant isolated from Streptomyces Tsukubaensis. Transplant Proc. 19 (5 Suppl 6), 4-8 (1987).
  2. Kino, T., Hatanaka, H., Miyata, S. FK506, a novel immunosuppressant isolated from a streptomyces. I: Fermentation, isolation and physico-chemical and biological characteristics. J. Antibiotics. 40 (9), 1249-1255 (1987).
  3. Starzl, T. E., et al. FK506 for liver, kidney and pancreas transplantation. Lancet. 2 (8670), 1000-1004 (1989).
  4. . Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. European FK506 Multicentre Liver Study Group. Lancet. 344 (8920), 423-428 (1994).
  5. . A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. The U.S. Multicenter FK506 Liver Study Group. N. Engl. J. Med. 331 (17), 1110-1115 (1994).
  6. Mayer, A. D., et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. Transplantation. 64 (3), 436-443 (1997).
  7. Pirsch, J. D., Miller, J., Deierhoi, M. H., Vincenti, F., Filo, R. S. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group.. Transplantation. 15 (7), 977-983 (1997).
  8. Tanaka, H., et al. Physicochemical properties of FK506 a novel immunosuppressant isolated from Streptomyces Tsukubaensis. Transplant Proc. 14 ((5 Suppl 6)), 11-16 (1987).
  9. Spencer, C. M., Goa, K. L., Gills, J. C. Tacrolimus. An update of its pharmacology and clinical efficacy in the management of organ transplantation. Drugs. 54 (6), 925-975 (1997).
  10. Clipstone, N. A., Crabtree, G. R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 357 (6380), 695-697 (1992).
  11. Barbarino, J. M., Staatz, C. E., Venkataramanan, R., Klein, T. E., Altman, R. B. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet. Genomics. 23 (10), 563-585 (2013).
  12. Christians, U., Benet, L. Z., Lampen, A. Mechanisms of clinically significant drug interactions associated with tacrolimus. Clin. Pharmacokinet. 41 (11), 813-851 (2002).
  13. Christians, U., Pokaiyavananichkul, T., Chan, L., Burton, M. E., Shaw, L. M., Schentag, J. J., Evans, W. e. b. b. Tacrolimus In: Pharmacokinetics and Pharmacodynamics. Principles of Therapeutic Drug Monitoring. , 529-562 (2005).
  14. Holt, D. W., et al. International Federation of Clinical Chemistry/ International Association of Therapeutic Drug Monitoring and Clinical Toxicology working group on immunosuppressive drug monitoring. Ther. Drug Monit. 24 (1), 59-67 (2002).
  15. Holt, D. W., Jones, K., Lee, T., Stadler, P., Johnston, A. Quality assessment issues of new immunosuppressive drugs and experimental experience. Ther. Drug Monit. 18 (4), 362-367 (1996).
  16. Jusko, W. J., et al. Consensus document: therapeutic drug monitoring of tacrolimus (FK-506). Ther. Drug Monit. 17 (6), 606-614 (1995).
  17. Oellerich, M., et al. Therapeutic drug monitoring of cyclosporine and tacrolimus. Update on Lake Louise Conference on cyclosporine and tacrolimus. Clin. Biochem. 31 (5), 309-316 (1998).
  18. Wong, S. H. Therapeutic drug monitoring for immunosuppressants. Clin. Chim. Acta. 313 (1-2), 241-253 (2001).
  19. Kahan, B. D., et al. Low intraindividual variability of cyclosporin A exposure reduces chronic rejection incidence and health care costs. J. Am. Soc. Nephrol. 11 (6), 1122-1131 (2000).
  20. Kahan, B. D., et al. Variable oral absorption of cyclosporine. A biopharmaceutical risk factor for chronic renal allograft rejection. Transplantation. 62 (5), 599-606 (1996).
  21. Kelly, D. A. Current issues in pediatric transplantation. Pediatr. Transplant. 10 (6), 712-720 (2006).
  22. Spivey, C. A., Chisholm-Burns, M. A., Damadzadeh, B., Billheimer, D. Determining the effect of immunosuppressant adherence on graft failure risk among renal transplant recipients. Clin. Transplant. 28 (1), 96-104 (2014).
  23. Taylor, P. J., Tai, C. H., Franklin, M. E., Pillans, P. I. The current role of liquid chromatography-tandem mass spectrometry in therapeutic drug monitoring of immunosuppressant and antiretroviral drugs. Clin. Biochem. 44 (1), 14-20 (2011).
  24. Edelbroek, P. M., van der Heijden, J., Stolk, L. M. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther. Drug Monit. 31 (3), 327-336 (2009).
  25. Meesters, R. J., Hooff, G. P. State-of-the-art dried blood spot analysis: an overview of recent advances and future trends. Bioanalysis. 5 (17), 2187-2208 (2013).
  26. Pandya, H. C., Spooner, N., Mulla, H. Dried blood spots, pharmacokinetic studies and better medicines for children. Bioanalysis. 3 (7), 779-786 (2011).
  27. Koster, R. A., Alffenaar, J. W., Greijdanus, B., Uges, D. R. Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta. 115 (Oct 15), 47-54 (2013).
  28. Hinchliffe, E., Adaway, J., Fildes, J., Rowan, A., Keevil, B. G. Therapeutic drug monitoring of ciclosporin A and tacrolimus in heart lung transplant patients using dried blood spots. Ann Clin. Biochem. 51 (Pt 1), 106-109 (2014).
  29. Koop, D. R., Bleyle, L. A., Munar, M., Cherala, G., Al-Uzri, A. Analysis of tacrolimus and creatinine from a single dried blood spot using liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.. 926 ((May 1)), 54-61 (2013).
  30. Sadilkova, K., Busby, B., Dickerson, J. A., Rutledge, J. C., Jack, R. M. Clinical validation and implementation of a multiplexed immunosuppressant assay in dried blood spots by LC-MS/MS. Clin. Chim. Acta.. 421 ((Jun 5)), 152-156 (2013).
  31. Li, Q., Cao, D., Huang, Y., Xu, H., Yu, C., Li, Z. Development and validation of a sensitive LC-MS/MS method for determination of tacrolimus on dried blood spots. Biomed. Chromatogr. 27 (3), 327-334 (2013).
  32. Hinchliffe, E., Adaway, J. E., Keevil, B. G. Simultaneous measurement of cyclosporin A and tacrolimus from dried blood spots by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.. 883-884 ((Feb 1)), 102-107 (2012).
  33. Webb, N. J., Roberts, D., Preziosi, R., Keevil, B. G. Fingerprick blood samples can be used to accurately measure tacrolimus levels by tandem mass spectrometry). Pediatr. Transplant. 9 (6), 729-733 (2005).
  34. Keevil, B. G., Fildes, J., Baynes, A., Yonan, N. Liquid chromatography-mass spectrometry measurement of tacrolimus in finger-prick samples compared with venous whole blood samples. Ann. Clin. Biochem. 46 (Pt 2), 144-145 (2009).
  35. Yonan, N., Martyszczuk, R., Machaal, A., Baynes, A., Keevil, B. G. Monitoring of cyclosporine levels in transplant recipients using self-administered fingerprick sampling. Clin. Transpl. 20 (2), 221-225 (2006).
  36. Keevil, B. G., et al. Simultaneous and rapid analysis of cyclosporin A and creatinine in finger prick blood samples using liquid chromatography tandem mass spectrometry and its application in C2 monitoring. Ther Drug Monit. 24 (6), 757-767 (2002).
  37. Hoogtanders, K., et al. Dried blood spot measurement of tacrolimus is promising for patient monitoring. Transplantation. 83 (2), 237-238 (2007).
  38. Heijden, J., et al. Therapeutic drug monitoring of everolimus using the dried blood spot method in combination with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 50 (4), 664-670 (2009).
  39. Cheung, C. Y., et al. Dried blood spot measurement: application in tacrolimus monitoring using limited sampling strategy and abbreviated AUC estimation. Transpl. Int. 21 (2), 140-145 (2008).
  40. Hoogtanders, K., et al. Therapeutic drug monitoring of tacrolimus with the dried blood spot method. J. Pharm. Biomed. Anal. 44 (3), 658-664 (2007).
  41. Wilhelm, A. J., den Burger, C. J., Vos, R. M., Chahbouni, A., Sinjewel, A. Analysis of cyclosporin A in dried blood spots using liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (14-15), 1595-1598 (2009).
  42. Ostler, M. W., Porter, J. H., Buxton, M. O. Dried blood spot collection of health biomarkers to maximize participation in population studies. J. Vis. Exp. (83), e50973 (2014).
  43. Schäfer, P., Störtzel, M., Vogt, S., Weinmann, W. Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries. J. Chromatogr. B. 773 (1), 47-52 (2002).
  44. Peck, H. R., Timko, D. M., Landmark, J. D., Stickle, D. F. A survey of apparent blood volumes and sample geometries among filter paper bloodspot samples submitted for lead screening. Clin. Chim. Acta. 400 (1-2), 103-106 (2009).
  45. Christians, U., et al. Automated, fast and sensitive quantification of drugs in blood by liquid chromatography-mass spectrometry with on-line extraction: immunosuppressants. J. Chromatogr. B. 748 (1), 41-53 (2000).
  46. Clavijo, C., et al. Development and validation of a semi-automated assay for the highly sensitive quantification of Biolimus A9 in human whole blood using high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877 (29), 3506-3514 (2009).
  47. Mei, J. V., Alexander, J. R., Adam, B. W., Hannon, W. H. Use of filter paper for the collection and analysis of human whole blood specimens. J. Nutr. 131 (5), S1631-S1636 (2001).

Play Video

Cite This Article
Shokati, T., Bodenberger, N., Gadpaille, H., Schniedewind, B., Vinks, A. A., Jiang, W., Alloway, R. R., Christians, U. Quantification of the Immunosuppressant Tacrolimus on Dried Blood Spots Using LC-MS/MS. J. Vis. Exp. (105), e52424, doi:10.3791/52424 (2015).

View Video