Summary

Culturas alternativas para Pluripotentes Stem Cell Production, mantenimiento y análisis genético

Published: July 24, 2014
doi:

Summary

Here, we present human pluripotent stem cell (hPSC) culture protocols, based on non-colony type monolayer (NCM) growth of dissociated single cells. This new method, utilizing Rho-associated kinase inhibitors or the laminin isoform 521 (LN-521), is suitable for producing large amounts of homogeneous hPSCs, genetic manipulation, and drug discovery.

Abstract

Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.

Introduction

La capacidad de hPSCs para diferenciar hacia los tejidos adultos multilinaje ha abierto nuevas vías para el tratamiento de pacientes que sufren de enfermedades graves que involucran cardiovasculares, hepáticas, pancreáticas, y los sistemas neurológicos 1-4. Varios tipos de células derivadas de hPSCs también proporcionarían plataformas móviles robustos para el modelado de la enfermedad, la ingeniería genética, la detección de drogas y 1,4 pruebas toxicológicas. La cuestión clave que garantiza sus futuras aplicaciones clínicas y farmacológicas es la generación de un gran número de hPSCs de grado clínico a través de cultivo celular in vitro. Sin embargo, los sistemas de cultivo actuales son insuficientes o intrínsecamente variables, diversos cultivos de alimentación y libres de alimentador de hPSCs como colonias 5,6.

Crecimiento de tipo colonia de acciones hPSCs muchas características estructurales de la masa celular interna (ICM) de embriones de mamíferos tempranos. El ICM es propenso a diferenciarse en las tres capas germinalesen un entorno multicelular debido a la existencia de gradientes de señalización heterogéneos. Por lo tanto, la adquisición de la heterogeneidad en el desarrollo embrionario temprano se considera como un proceso necesario para la diferenciación, pero una característica no deseada de la cultura HPSC. La heterogeneidad en la cultura HPSC es a menudo inducida por señales apoptóticas excesivas y diferenciación espontánea debido a las condiciones de crecimiento subóptimas. Por lo tanto, en el tipo de colonia de cultivo, las células heterogéneas se observan a menudo en la periferia de las colonias 7,8. También se ha demostrado que las células en células madre embrionarias (células madre) colonias de respuestas diferenciales de exposición a moléculas de señalización tales como BMP-9 4. Por otra parte, los métodos de cultivo de colonias producen rendimientos bajos de células, así como las tasas de recuperación muy bajo de células de la criopreservación, debido a las tasas de crecimiento incontrolable y señalización apoptótica pathways 6,9. En los últimos años, diversos cultivos en suspensión han sido desarrollados para hPSCs de cultivo, particulArly para la expansión de grandes cantidades de hPSCs en subordinado, y las condiciones de matriz libre 6,10-13. Obviamente, diferentes sistemas de cultivo tienen sus propias ventajas y desventajas. En general, la naturaleza heterogénea de hPSCs representa uno de los principales inconvenientes en los métodos de tipo colonia y cultura agregada, que son subóptimas para la entrega de materiales de ADN y de ARN en hPSCs para la ingeniería genética 6.

Claramente, existe una necesidad imperiosa de desarrollar nuevos sistemas que evitan algunas deficiencias de los métodos de cultivo actuales. Los descubrimientos de inhibidores de moléculas pequeñas (como el inhibidor de la ROCA Y-27632 y JAK inhibidor 1) que mejoran la supervivencia de una sola célula preparan el terreno para el cultivo disociado-HPSC 14,15. Con el uso de estas moléculas pequeñas, hemos desarrollado recientemente un método de cultivo basado en el tipo no-colonia (NCM) de crecimiento de-hPSCs disociadas 9. Este método de cultivo de la novela combina pases de una sola célula y de alta densidadchapado métodos, que nos permite producir grandes cantidades de hPSCs homogéneas bajo ciclos de crecimiento consistentes sin mayores anomalías cromosómicas 9. Alternativamente, la cultura NCM podría ser implementado con diferentes moléculas pequeñas y matrices definidas (tales como lamininas) con el fin de optimizar el método de cultivo para amplias aplicaciones. A continuación, presentamos varios protocolos de detalle sobre la base de la cultura NCM y delinear los procedimientos detallados para la ingeniería genética. Para demostrar la versatilidad de los protocolos de NCM, también a prueba la cultura NCM con inhibidores de ROCK diversos y con la única isoforma laminina 521 (es decir, LN-521).

Protocol

Basada en células Individual tipo no colonia monocapa (NCM) cultura de hPSCs. 1. Preparación Hacer 500 ml de medio de cultivo de fibroblastos embrionarios de ratón (MEFs): medio DMEM suplementado con 10% de FBS, 2 mM de L-glutamina, y 0,1 mM de aminoácidos no esenciales (NEAA). Aislar fibroblastos embrionarios de ratón (MEFs) células derivadas de la cepa CF1 siguiendo un protocolo de rutina 16 y la cultura MEFs en 0,1% 6-así placa de cultivo celular rec…

Representative Results

Un esquema general de la cultura NCM La figura 1 representa un esquema típico de la cultura NCM que muestra los cambios dinámicos de hPSCs después de alta densidad de placas de una sola célula en presencia del inhibidor de Rock y-27632. Estos cambios morfológicos incluyen conexiones intercelulares después de la siembra, la formación de grupos celulares, y el crecimiento celular exponencial seguida de la condensación de células (Figura 1A).</…

Discussion

Hay dos formas principales para hPSCs de cultivo in vitro: cultura convencional de tipo colonia (de las células en los comederos o matrices extracelulares) y de cultivo en suspensión de hPSCs como agregados sin alimentadores 6. Las limitaciones de los métodos de cultivo, tanto de tipo colonia y suspensión incluyen la heterogeneidad acumulada y los cambios epigenéticos heredables. Cultura NCM, basada tanto en los pases de una sola célula y de las planchas de células de alta densidad, r…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Health (NIH) at the National Institute of Neurological Disorders and Stroke. We would like to thank Dr. Ronald D. McKay for his discussion and comments on this project.

Materials

Countess automated cell counter   Invitrogen Inc.  C10227 Automatic cell counting
Faxitron Cabinet X-ray System Faxitron X-ray Corporation, Wheeling, IL  Model RX-650 X-ray irradiation of MEFs
MULTIWELL six-well plates  Becton Dickinson Labware 353046 Polystyrene plates 
DMEM Invitrogen Inc. 11965–092 For MEF medium
mitomycin C Roche  107 409 Mitotic inhibitor
Trypsin Invitrogen Inc. 25300-054 For MEF dissociation
DMEM/F12  Invitrogen Inc. 11330–032 For hPSC medium
Opti-MEM I Reduced Serum Medium  Invitrogen Inc. 31985-062 For hPSC transfection
Heat-inactivated FBS Invitrogen Inc. 16000–044 Component of MEF medium
Knockout Serum Replacer  Invitrogen Inc. 10828–028 KSR, Component of hPSC medium
Dulbecco’s Phosphate-Buffered Saline Invitrogen Inc. 14190-144 D-PBS, free of Ca2+/Mg2+
Non-essential amino acids  Invitrogen  11140–050 NEAA, component of hPSC medium
L-Glutamine  Invitrogen  25030–081 Component of hPSC medium
mTeSR1 & Supplements StemCell Technologies 5850 Animal protein-free
medium
TeSR2 & Supplements StemCell Technologies 5860 Xeno-free medium
β-mercaptoethanol  Sigma  7522 Component of hPSC medium

MEF (CF-1) ATCC
American Type Culture Collection (ATCC)  SCRC-1040 For feeder culture of hPSCs
hESC-qualified Matrigel BD Bioscience 354277 For feeder-free culture of hPSCs
Laminin-521 BioLamina LN521-02 Human recombinant protein
FGF-2 (recombinant FGF, basic) R&D Systems, MN 223-FB Growth factor in hPSC medium
CryoStor CA10  StemCell Technologies 7930
Accutase Innovative Cell Technologies AT-104 1X mixed enzymatic solution
JAK inhibitor I EMD4 Biosciences 420099 An inhibitor of Janus kinase
Y-27632 EMD4 Biosciences 688000 ROCK inhibitor
Y-27632 Stemgent 04-0012 ROCK inhibitor
Y-39983 Stemgent 04-0029 ROCK I inhibitor
Phenylbenzodioxane  Stemgent 04-0030 ROCK II inhibitor
Thiazovivin Stemgent 04-0017 A novel ROCK inhibitor
BD Falcon Cell Strainer  BD Bioscience 352340 40-µm cell strainer
Nalgene 5100-0001 Cryo 1°C Thermo Scientific  C6516F-1 “Mr. Frosty” Freezing Container
Lipofectamine 2000  Invitrogen Inc. 11668-027 Transfection reagents
DharmaFECT Duo  Thermo Scientific T-2010-02 Transfection reagent
Non-targeting miRIDIAN miRNA Transfection Control Thermo Scientific IP-004500-01-05 Labeled with Dy547, to monitor the delivery of microRNAs 
SMART-shRNA Thermo Scientific  To be determined Lentiviral vector
pmaxGFP amaxa Inc (Lonza) Included in every transfection kit Expression plasmid for transfection control
4-Oct Santa Cruz Biotechnology sc-5279 Mouse IgG2b, pluripotent marker
SSEA-1 Santa Cruz Biotechnology sc-21702 Mouse IgM, differentiation marker
SSEA-4 Santa Cruz Biotechnology sc-21704 Mouse IgG3, pluripotent marker
Tra-1-60 Santa Cruz Biotechnology sc-21705  Mouse IgM, pluripotent marker
Tra-1-81 Santa Cruz Biotechnology sc-21706 Mouse IgM, pluripotent marker
CK8 (C51) Santa Cruz Biotechnology sc-8020 Mouse IgG1, against cytokeratin 8
α-fetoprotein Santa Cruz Biotechnology sc-8399 AFP, mouse IgG2a
HNF-3β (P-19) Santa Cruz Biotechnology sc-9187 FOXA2, goat polyclonal antibody
Troponin T (Av-1) Thermo Scientific MS-295-P0 Mouse IgG1
Desmin  Thermo Scientific RB-9014-P1 Rabbit IgG
Anti-NANOG ReproCELL Inc, Japan RCAB0004P-F Polyclonal antibody 
Rat anti-GFAP Zymed 13-0300 Glial fibrillary acidic protein
Albumin (clone HSA1/25.1.3) Cedarlane Laboratories Ltd. ( CL2513A Mouse IgG1,
Smooth muscle actin (clone 1A4) DakoCytomation Inc IR611/IS611 Mouse IgG2a
Nestin Chemicon International MAB5326 Rabbit polyclonal antibody
TUBB3 Convance Inc MMS-435P Tuj1, mouse IgG2a
HNF4α (C11F12) Cell Signaling Technologies 3113 Rabbit monoclonal antibody
Paraformaldehyde (solution) Electron Microscopy Sciences 15710 PFA, fixative, diluted in D-PBS

References

  1. Cherry, A. B., Daley, G. Q. Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med. 64, 277-290 (2013).
  2. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  3. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  4. Burridge, P. W., et al. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10, 16-28 (2012).
  5. Mallon, B. S., et al. StemCellDB: The Human Pluripotent Stem Cell Database at the National Institutes of Health. Stem Cell Res. 10, 57-66 (2012).
  6. Chen, K. G., et al. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 14, 13-26 (2014).
  7. Bendall, S. C., et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 448, 1015-1021 (2007).
  8. Moogk, D., et al. Human ESC colony formation is dependent on interplay between self-renewing hESCs and unique precursors responsible for niche generation. Cytometry A. 77, 321-327 (2010).
  9. Chen, K. G., et al. Non-colony type monolayer culture of human embryonic stem cells. Stem Cell Res. 9, 237-248 (2012).
  10. Amit, M., et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev. 6, 248-259 (2010).
  11. Dang, S. M., et al. scalable embryonic stem cell differentiation culture. Stem Cells. 22, 275-282 (2004).
  12. Serra, M., et al. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol. 30, 350-359 (2012).
  13. Steiner, D., et al. propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol. 28, 361-364 (2010).
  14. Watanabe, K., et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 25, 681-686 (2007).
  15. Androutsellis-Theotokis, A., et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 442, 823-826 (2006).
  16. Jozefczuk, J., et al. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp. , (2012).
  17. Kozhich, O. A., et al. Standardized Generation and Differentiation of Neural Precursor Cells from Human Pluripotent Stem Cells. Stem Cell Rev. , (2012).
  18. Kunova, M., et al. Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Transl Med. 2, 246-254 (2013).
  19. Tsutsui, H., et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun. 2, 167 (2011).
  20. Amps, K., et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 29, 1132-1144 (2011).
  21. Baker, D. E., et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 25, 207-215 (2007).
  22. Lee, A. S., et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 19, 998-1004 (2013).
  23. Domogatskaya, A., et al. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells. 26, 2800-2809 (2008).
  24. Domogatskaya, A., et al. Functional diversity of laminins. Annu Rev Cell Dev Biol. 28, 523-553 (2012).
  25. Rodin, S., et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 28, 611-615 (2010).
  26. Liew, C. G., et al. Transient and stable transgene expression in human embryonic stem cells. Stem Cells. 25, 1521-1528 (2007).
  27. Braam, S. R., et al. Genetic manipulation of human embryonic stem cells in serum and feeder-free media. Methods Mol Biol. 584, 413-423 (2010).
  28. Braam, S. R., et al. Improved genetic manipulation of human embryonic stem cells. Nat Methods. 5, 389-392 (2008).

Play Video

Cite This Article
Chen, K. G., Hamilton, R. S., Robey, P. G., Mallon, B. S. Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis. J. Vis. Exp. (89), e51519, doi:10.3791/51519 (2014).

View Video