Summary

细胞壁的弹性性能的原子力显微镜为基础的映射:在组织,细胞,亚细胞和决议

Published: July 24, 2014
doi:

Summary

We describe a method to map mechanical properties of plant tissues using an atomic force microscope (AFM). We focus on how to record mechanical changes that take place in cell walls during plant development at wide-field mesoscale, enabling these changes to be correlated with growth and morphogenesis.

Abstract

我们描述了一种最近开发的方法来测量植物组织的表面的机械特性使用原子力显微镜(AFM)的微/纳米压痕,要JPK原子力显微镜。具体来说,在这个协议中,我们测量视杨氏模量的细胞壁在跨区域的亚细胞分辨率可达100 微米 ×100微米花分生组织,下胚轴和根。这需要精心准备的样品,正确选用微压头和压痕深度。只占,测量在甘露醇的高度浓缩的溶液以质壁分离的细胞中,从而除去细胞膨压的贡献进行细胞壁的属性。

相对于其他现存的技术,通过使用不同的压头和压痕深度,该方法允许同时多尺度测量<em>即在细胞内的决议和在数百细胞包括组织的。这意味着,现在有可能在空间上,时间上的特征所发生的细胞壁的机械性质在开发过程中,使这些变化与生长和分化相关联的变化。这是一个关键的步骤,了解协调的微观细胞的变化如何带来宏观形态发生的事件。

然而,一些局限性依然存在:该方法只能用于在相当小的样品(大约100μm直径),并且只在外部组织;该方法是将组织形貌敏感;它测量的组织复杂的机械特性只有某些方面。该技术正在迅速发展,很可能大多数的这些限制将在不久的将来得到解决。

Introduction

在植物生长受周围的生物体的每一个细胞的刚性细胞壁的协调扩张来实现。越来越多的证据表明它是通过细胞壁化学修饰的植物局部控制这种膨胀。膨胀被认为是主要受应变的细胞壁,引起细胞的高膨压上;此应变响应膨压是由细胞壁1的机械性能约束。鲜为人知的是,这些机械性能和他们在开发过程中如何变化。而且很少有人知道如何将这些机械性能的控制和反馈是否有助于改变细胞壁化学在显然是跨组织协调的方式。如果我们要了解发育过程中植物细胞壁的化学和机械变化,最终如何将这些微观相互作用支配植物之间的连接的宏观增长,一个是可以监控的细胞壁中,在细胞或组织规模发展器官的机械性能的方法是必需的。

这里的原子力显微镜(AFM)所描述的方法,它是基于微米或纳米级组织的压缩或压痕,开发了精确测量的细胞壁中的亚细胞分辨率同时显影机构和跨组织的整个区域的机械性能。其他的方法有两种,分辨率太低或太高:引伸计仅能够在毫米尺度2-4,其规模是例如过大而无法 ​​测量中的早期事件,以测量整个组织的平均机械性能器官;该microindenter可以进行测量以在纳米尺度的亚细胞的分辨率,但它被限制在测定分离的细胞,而不是细胞或器官5-7的基团。用原子力显微镜的要求三维组织,细胞,亚细胞分辨率可达到8-10。最近几个协议已被开发专门用于测量植物组织中,可能也可用于11,12的结构。

我们将在这里介绍了如何通过表观杨氏模13的测量评估组织的弹性。

杨氏模量通常是用来描述材料的刚度。在小变形而变形的材料所需要的力是正比于压痕的面积。杨氏模量是该系数。在一个连续的均匀的材料的情况下相同的系数将被考虑的缩进类型(大小和形状)的测定,但将与所述测量的速度发生变化。在植物组织中的复杂结构的情况下,我们观察到,到目前为止,该力正比于该变形容许的确定比例系数,我们命名为“表观杨氏模量”。在从连续媒体中的植物相比,这明显的杨氏模量是压痕的大小敏感。它不对应于一个纯细胞壁的年轻模量。它最能说明细胞壁组织的脚手架的弹性。

Protocol

1,准备玻璃幻灯片的安装示例准备嵌入琼脂糖介质:10%甘露糖醇(在水中)0.7%低熔点琼脂糖。 使用强金属工具( 如钻头尖,酸橙),蚀刻出一0.5×0.5厘米面积在显微镜载玻片上的中心位置。或者相反,粘上一小块玻璃薄片(约20×200微米),以使用爱牢达胶水的载玻片上。注:此变粗糙的表面,以便于琼脂糖的附着力,以确保琼脂糖介质棒或修复的幻灯片。该滑动可重复…

Representative Results

在图1中,我们提出花分生组织( 图1A和1B),年轻人和老年人的下胚轴( 图1C-F)和根分生组织( 图1G和1H)典型的年轻模量地图。在所有实验中压头是半球形的,但它的半径不同,使不同空间分辨率可以达到图1C和1D显示了中观纳米压头(50纳米半径)与介观纳米压痕(50 nm的深度)的典型结果。…

Discussion

在植物中,改变机械性能起到引导生长和形态发生了重大作用。到目前为止,已经在解开控制植物生长的遗传和化学网络很大的进步,但我们对这些网络如何促进并受到改变机械性能知识是最基本的。这个方法应该使我们能够填补这一空白,所以它应该是浓厚的兴趣,科学家研究植物生长或形态发生的任何方面的。现在我们总结了该方法的挑战和局限,以及未来展望。

在协?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们特别感谢伊夫Couder许多有益的讨论。我们感谢阿提夫Asnacios的悬臂和讨论的校准。我们感谢丽莎·威利斯,艾略特迈耶罗维茨,和奥利弗Hamant批判性的阅读。这项工作被资助了一部分由人类前沿科学计划授出RGP0062/2005-C;在法新社国立德拉RECHERCHE项目'' Growpec,''和'''' Mechastem。

Materials

AFM JPK NanoWizard All the 3-generation are abele to do the work withe the same preferment
AFM stage JPK CellHesion Required for sample withe low topography (les then 11µm between the lowest and the highest point in the aria of force scanning).
AFM optics JPK Top View Optics  Very important in order to position the sample. Cold be replaces by long range a binocular or microscope
Stereo Microscopes  Leica M125 Any type of stereo microscopes could do. 
150nm mounted cantilever  nanosensors Rue Jaquet-Droz 1Case Postale 216 CH-2002 Neuchatel Switzerland R150-NCL-10 To measure only the cell wall at the surface of the epidermis use
1µm mounted cantilever  nanosensors Rue Jaquet-Droz 1Case Postale 216 CH-2002 Neuchatel Switzerland SD-Sphere-NCH-S-10  to measure the mechanics of the cell wall orthogonal to the surface of the epidermis
Tipless cantiliver nanosensors Rue Jaquet-Droz 1Case Postale 216 CH-2002 Neuchatel Switzerland TL-NCH-20  to measure the local mechanics of the tissue (2-3 cell wide) use a 5µm mounted cantilever. We attached a 5µm borasilicate bead to a tipless cantiliver
5µm silicon microspheres Corpuscular C-SIO-5
Aradilte  Bartik S.A. 77170 Coubet France Aradilte for fixing the bead to the tip les cantiliver
 low melting Agarows Fishersci Fair Lawn , new jersey 07410 BP160-100 34-45 Gelation Temperature
D-Mannitol Sigma-Aldrich, 3050 Spruce Street, St Louis Mo 63103 USA) M4125-500G
2  Stainless Steel No. 5 Tweezers Ideal-Tek 6828 Balerna Switzerland  951199

References

  1. Cosgrove, D. J. Measuring in vitro extensibility of growing plant cell walls. Methods in molecular biology. 715, 291-303 (2011).
  2. Durachko, D. M., Cosgrove, D. J. Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. Journal of visualized experiments : JoVE. , 1263 (2009).
  3. Durachko, D. a. n. i. e. l. M., C, D. J. Measuring Plant Cell Wall Extension (Creep) Induced by Acidic pH and by Alpha-Expansin. J. Vis. Exp.. , 25 (2009).
  4. Suslov, D., Verbelen, J. P., Vissenberg, K. Onion epidermis as a new model to study the control of growth anisotropy in higher plants. Journal of experimental botany. 60, 4175-4187 (2009).
  5. Parre, E., Geitmann, A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta. 220, 582-592 (2005).
  6. Zerzour, R., Kroeger, J., Geitmann, A. Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Developmental biology. 334, 437-446 (2009).
  7. Radotic, K., et al. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophysical journal. 103, 386-394 (2012).
  8. Milani, P., et al. In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. The Plant journal : for cell and molecular biology. 67, 1116-1123 (2011).
  9. Peaucelle, A., et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Current biology : CB. 21, 1720-1726 (2011).
  10. Braybrook, S. A., Hofte, H., Peaucelle, A. Probing the mechanical contributions of the pectin matrix: Insights for cell growth. Plant signaling & behavior. 7, 1037-1041 (2012).
  11. Routier-Kierzkowska, A. L., et al. Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant physiology. 158, 1514-1522 (2012).
  12. Agudelo, C. G., et al. TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. The Plant journal : for cell and molecular biology. 73, 1057-1068 (2013).
  13. Miedes, E., et al. Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. Journal of experimental botany. 64, 2481-2497 (2013).
  14. Byrne, M. E., et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature. 408, 967-971 (2000).
  15. Cook, S. M., et al. Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology. 17, 20135-22145 (2006).
  16. Desprat, N., Richert, A., Simeon, J., Asnacios, A. Creep function of a single living cell. Biophysical journal. 88, 2224-2233 (2005).
  17. Peaucelle, A., Braybrook, S., Hofte, H. Cell wall mechanics and growth control in plants: the role of pectins revisited. Frontiers in plant science. 3, 121 (2012).
  18. Mittler, R., et al. ROS signaling: the new wave. Trends in plant science. 16, 300-309 (2011).
  19. Braybrook, S. A., Peaucelle, A. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLoS. 8, e57813 (2013).
  20. Asnacios, A., Hamant, O. The mechanics behind cell polarity. Trends in cell biology. 22, 584-591 (2012).
  21. Meister, A., et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano letters. 9, 2501-2507 (2009).
  22. Lintilhac, P. M., Wei, C., Tanguay, J. J., Outwater, J. O. Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells. Journal of plant growth regulation. 19, 90-97 (2000).
  23. Kroeger, J. H., Zerzour, R., Geitmann, A. Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PloS one. 6, e18549 (2011).
  24. Forouzesh, E., Goel, A., Mackenzie, S. A., Turner, J. A. In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling. The Plant journal : for cell and molecular biology. 73, 509-520 (2013).

Play Video

Cite This Article
Peaucelle, A. AFM-based Mapping of the Elastic Properties of Cell Walls: at Tissue, Cellular, and Subcellular Resolutions. J. Vis. Exp. (89), e51317, doi:10.3791/51317 (2014).

View Video