Summary

遗传操纵鼠标的发展下丘脑通过<em>在子宫内</em>电穿孔

Published: July 24, 2013
doi:

Summary

尽管下丘脑的功能和医学重要性,<em>在子宫内</em>遗传操纵其发展已经很少有人尝试。我们显示的详细步骤<em>在子宫内</em>电到老鼠的下丘脑和展示具有代表性的结果整体和局部(区域)下丘脑转。

Abstract

基因改造发展哺乳动物大脑的特定区域,是一个非常强大的实验方法。但是,生成新的小鼠突变体往往是令人沮丧的缓慢。它已被证明, 在子宫内的合理的操作室后的生存期的小鼠脑开发的访问是可能的。不过,此过程的结果与已报道几乎完全发育中的大脑最肤浅和容易获得的部分, 皮层。丘脑,更窄,更内侧的区域,已被证明更加困难的目标。转染到更深的原子核,特别是下丘脑,可能是最具挑战性的,因此很少的结果已被报道。在这里,我们展示了一个过程为目标的整个下丘脑神经上皮或它的一部分(下丘脑地区)通过电穿孔转染。我们的方法的关键是昏迷时间较长,注射在T希尔德心室,以及适当的种类和电极的定位。此外,我们将展示最凹陷的下丘脑核,乳头体定位和随后的病理分析结果。

Introduction

遗传操纵胚胎小鼠大脑是首选的方法,了解发育调控。然而,突变小鼠线的产生是缓慢和昂贵。一个强大的方法来引入特定的基因哺乳动物的大脑发育中神经元的变化是在子宫内的电。本质上,该技术包括DNA转染到胚胎脑的神经上皮通过电脉冲,然后使胚胎存活了一段时间,收集大脑,并分析它的可能的新颖,翔实的表型。以这种方式,实验者可以几乎立即测试假设没有小鼠突变体的生产所需的等待时间长。

到胚胎发育开始的DNA转染在OVO电鸡胚1。基本概念证明型的鼠标进行文化<s高达2。这很快就被随后该技术在子宫内 3,4鼠标的第一个描述。

主要的问题是转染而不杀死它们,或者母亲的大脑在子宫内的胚胎发展。学习进行必要的手术(开腹手术,注射,电穿孔),需要一个漫长的训练期。一旦手术已经掌握的胚胎存活率比是可以接受的地步,接下来的关键问题是:大脑结构进行访问?这并不奇怪,首次发表的论文,得到的结果与在子宫内的电主要集中在皮质发育5-9。这是使用这种技术刊物的大部分仍然是正确的,因为该区域是在显影最访问外科手术的小鼠大脑皮质( 图1)。已经描述了该程序为在子宫内的电穿孔到皮质在打印10 11-14视频。可以使用的技术的修改目标端 ​​脑腹侧部,在基底神经节15。

除了端脑,间脑(传统分为丘脑和下丘脑)是前脑更难以达到的区域。少数的论文报告,针对其背鳍和最容易的部分,丘脑16-19。

下丘脑是最腹侧的前脑的一部分,因此,一个本地化的最深刻的背侧表面(皮层)( 图1)。 在子宫内基因操作的小鼠大脑的研究人员致力于该地区仍然是一个艰巨的挑战。据我们所知,只有极少数文章报道的在宫内转染到小鼠下丘脑20,21的结果。然而,canno下丘脑功能的重要性被夸大了,因为它规定的行为,如吃喝,交配,繁殖和养育子女的22。此外,改变下丘脑发展有助于以后的生活条件,如肥胖,高血压,糖尿病,性早熟的23起源。基因能够改变下丘脑在开发过程中会提供一个非常强大的工具来了解它。

基本手术开腹孕鼠,我们这里使用的是类似的协议,用于其他协议11,13,14,24。我们将在这里简要地描述他们的完整性。我们的程序的关键,在另一方面,是不同的麻醉,注射的地方,不同的电极的正极相对于胚胎的头部插入和位置。我们优选通过气体吸入超过简单的腹腔麻醉诱导和维持麻醉,因为前者允许有些较长的麻醉需要一个艰难的手术。吸入异氟醚麻醉恢复快,因为通常是母亲表现出正常的行为已经分钟后手术。最简单的点注入的DNA溶液的玻璃微侧脑室内,但它是完全不适合丘脑电穿孔。直接在第三脑​​室注射液确实是针对深间脑结构的关键。这是可能的转染与标准的,现成的电极从E12.0或E12.5下丘脑。我们已经发现了一些特别适合来此的目的NEPA基因(日本千叶)制造的电极。

随着我们的过程中,我们得到整个下丘脑神经上皮或部分区域转取决于电极方向转。在这里,我们展示了乳头体转染技术,可以说是最深和最凹进的所有丘脑核团。此外,我们详细的组织学分析转染细胞的细胞层次的解析。

在子宫内的电转鼠标在子宫内发育中的大脑与其他方法的比较,可以发现在讨论部分。

Protocol

1。制备DNA和玻璃注射微量移液器质量好的玻璃的微量是必不可少的,降低了初始的高流产率,由于羊水流失。已经有据可查的程序拉玻璃微13,18,25。使用直径1.2mm的毛细管拉在常规萨特设定P = 500;热= 300 P-97的移动设备,上拉= 40,速度= 50;时间= 50。适合拉马用3毫米的“药谷”丝(萨特仪器FT330B)。 2毫米大小的细丝已经取得了对我们不太满意的结果。另一方面,坡口的微量提示似乎…

Representative Results

大多数丘脑神经元之间E11.5到E15.2出生,根据在大鼠有点短的鼠标发展27,28翻译成26的出生约会分析。下丘脑神经发生的高峰期达到在E12.5 29-31。因此,在本研究转染选择的年龄(E12.5),相当大的比例的下丘脑神经元可以在任何给定的尾鳍rostro的水平标记。 分析E18.5厚vibratome的类型的段( 图3A和3B)表明,下丘脑神经上皮的整个…

Discussion

关于麻醉:由于在子宫内的电穿孔进入下丘脑可以在技术上是艰巨而需要较长的昏迷时间,我们优选通过氧和异氟醚的混合物给药麻醉诱导和维持。根据我们的经验,动物可以保持适当的麻醉,在这样的时间长达一个小时,至少,母亲的恢复是非常快的,提高胚胎存活率。其他麻醉方法也可提供。最简单的程序由腹腔注射诱导和维持麻醉状态2.5 0.9毫升/千克体重的氯胺酮(25毫克/毫升),?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由德国研究基金会(德意志研究联合会)资助。

Materials

      REAGENTS
Acepromazine Sanofi GmbH   anesthetic
Isoflurane Baxter HDG9623 anesthetic
Ketamin Pharma GmbH   anesthetic
Fast Green Fluka 44715  
Rimadyl Pfizer   non-steroidal anti-inflammatory
Braunoderm Braun 3887138 povidone-iodine
Phosphate Buffer Saline PBS Gibco 14190  
Temgesic (buprenorphine) Essex Pharma   opioid analgesic
Eye Ointment Pan-Ophtal 7136926  
Xylazine Bayer    
      EQUIPMENT
Anaesthetic Device Komesaroff Mark-5 Medical Developments Australia ACN 004 903 682  
Capillary puller P-97 Sutter Instrument Co. P-97  
Compresstome Precisionary Instr. VF-300 Vibratome-type device
Confocal Microscope Zeiss LSM700  
Cryostat Leica CM3050S  
Electroporator Nepa Gene Co. Ltd. CUY21EDIT  
Electrode 1 Nepa Gene Co. Ltd. CUY550-10 Stainless Steel Needle Electrode, 10 mm-Tip, 0. 5 mm diam.
Electrode 2 Nepa Gene Co. Ltd. CUY700P4L Cover Round Platinum Plate 4 mm diameter
Fiberoptic cold light source Leica KL2500 LCD  
Glass capillaries Harvard Apparatus GC120T-15 1. 2 mm O.D. x 0. 94 mm I.D.
Glass bead sterilizer Fine Science Tools FST250  
Heating pad Harvard Apparatus py872-5272  
Injection device World Precision Instruments Pneumatic Pico Pump PV820  
Suture Thread Coated Vicryl Ethicon V4914 Peritoneal Suture
Suture Thr. Supramid Serag Wiessner TO07171L Skin Suture

References

  1. Itasaki, N., Bel-Vialar, S., Krumlauf, R. Shocking’ developments in chick embryology: electroporation and in ovo gene expression. Nat. Cell Biol. 1, E203-E207 (1999).
  2. Miyasaka, N., Arimatsu, Y., Takiguchihayashi, K. Foreign gene expression in an organotypic culture of cortical anlage after in vivo electroporation. Neuroreport. 10, 2319-2323 (1999).
  3. Saito, T., Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237-246 (2001).
  4. Tabata, H., Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience. 103, 865-872 (2001).
  5. Fukuchi-Shimogori, T., Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science. 294, 1071-1074 (2001).
  6. Tabata, H., Nakajima, K. Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice. J. Neurosci. Res. 69, 723-730 (2002).
  7. Fukuchi-Shimogori, T., Grove, E. A. Emx2 patterns the neocortex by regulating FGF positional signaling. Nat. Neurosci. 6, 825-831 (2003).
  8. Shimogori, T., Banuchi, V., Ng, H. Y., Strauss, J. B., Grove, E. A. Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development. 131, 5639-5647 (2004).
  9. Shimogori, T., Grove, E. A. Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J. Neurosci. 25, 6550-6560 (2005).
  10. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552-1558 (2006).
  11. Dixit, R., et al. Efficient Gene Delivery into Multiple CNS Territories Using In Utero Electroporation. J. Vis. Exp. (52), e2957 (2011).
  12. Rice, H., Suth, S., Cavanaugh, W., Bai, J., Young-Pearse, T. L. In utero Electroporation followed by Primary Neuronal Culture for Studying Gene Function in Subset of Cortical Neurons. J. Vis. Exp. (44), e2103 (2010).
  13. Walantus, W., Castaneda, D., Elias, L., Kriegstein, A. In Utero Intraventricular Injection and Electroporation of E15 Mouse Embryos. J. Vis. Exp. (6), e239 (2007).
  14. Walantus, W., Elias, L., Kriegstein, A. In Utero Intraventricular Injection and Electroporation of E16 Rat Embryos. J. Vis. Exp. (6), e236 (2007).
  15. Borrell, V., Yoshimura, Y., Callaway, E. M. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J. Neurosci. Methods. 143, 151-158 (2005).
  16. Haddad-Tovolli, R., Heide, M., Zhou, X., Blaess, S., Alvarez-Bolado, G. Mouse thalamic differentiation: gli-dependent pattern and gli-independent prepattern. Front Neurosci. 6, 27 (2012).
  17. Kataoka, A., Shimogori, T. Fgf8 controls regional identity in the developing thalamus. Development. 135, 2873-2881 (2008).
  18. Matsui, A., Yoshida, A. C., Kubota, M., Ogawa, M., Shimogori, T. Mouse in Utero Electroporation: Controlled Spatiotemporal Gene Transfection. J. Vis. Exp. (54), e3024 (2011).
  19. Vue, T. Y., et al. Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice. J. Neurosci. 29, 4484-4497 (2009).
  20. Tanaka, S., et al. Transcriptional regulation of the hypocretin/orexin gene by NR6A1. Biochem. Biophys. Res. Commun. 403, 178-183 (2010).
  21. Tsuchiya, R., Takahashi, K., Liu, F. C., Takahashi, H. Aberrant axonal projections from mammillary bodies in Pax6 mutant mice: possible roles of Netrin-1 and Slit 2 in mammillary projections. J. Neurosci. Res. 87, 1620-1633 (2009).
  22. Canteras, N. S., Watson, C., Paxinos, G., Puelles, L. . The Mouse Nervous System. , 539-562 (2011).
  23. Caqueret, A., Yang, C., Duplan, S., Boucher, F., Michaud, J. L. Looking for trouble: a search for developmental defects of the hypothalamus. Horm. Res. 64, 222-230 (2005).
  24. Petros, T. J., Rebsam, A., Mason, C. A. In utero and ex vivo Electroporation for Gene Expression in Mouse Retinal Ganglion Cells. J. Vis. Exp. (31), e1333 (2009).
  25. Nijagal, A., Le, T., Wegorzewska, M., Mackenzie, T. C. A Mouse Model of in Utero Transplantation. J. Vis. Exp. (47), e2303 (2011).
  26. Altman, J., Bayer, S. A. The Development of the Rat Hypothalamus. Adv. Anat. Embryol. Cell Biol. 100, 1-178 (1986).
  27. Clancy, B., Darlington, R. B., Finlay, B. L. Translating developmental time across mammalian species. Neuroscience. 105, 7-17 (2001).
  28. Clancy, B., et al. Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics. 5, 79-94 (2007).
  29. Ishii, Y., Bouret, S. G. Embryonic birthdate of hypothalamic leptin-activated neurons in mice. Endocrinology. 153, 3657-3667 (2012).
  30. Karim, M. A., Sloper, J. C. Histogenesis of the supraoptic and paraventricular neurosecretory cells of the mouse hypothalamus. J. Anat. 130, 341-347 (1980).
  31. Shimada, M., Nakamura, T. Time of neuron origin in mouse hypothalamic nuclei. Exp. Neurol. 41, 163-173 (1973).
  32. Alvarez-Bolado, G., Paul, F. A., Blaess, S. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural. Dev. 7, 4 (2012).
  33. Vann, S. D., Aggleton, J. P. The mammillary bodies: two memory systems in one. Nat. Rev. Neurosci. 5, 35-44 (2004).
  34. Gratsch, T. E., De Boer, L. S., O’Shea, K. S. RNA inhibition of BMP-4 gene expression in postimplantation mouse embryos. Genesis. 37, 12-17 (2003).
  35. Wu, N., Yu, A. B., Zhu, H. B., Lin, X. K. Effective silencing of Sry gene with RNA interference in developing mouse embryos resulted in feminization of XY gonad. J. Biomed. Biotechnol. 2012, 343891 (2012).
  36. Kikuchi, N., Nakamura, S., Ohtsuka, M., Kimura, M., Sato, M. Possible mechanism of gene transfer into early to mid-gestational mouse fetuses by tail vein injection. Gene Ther. 9, 1529-1541 (2002).
  37. Foust, K. D., et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59-65 (2009).
  38. Xin, H., et al. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles. Biomaterials. 33, 1673-1681 (2012).
  39. Niwa, H., Yamamura, K., Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108, 193-199 (1991).
  40. Kaufman, R. J., Davies, M. V., Wasley, L. C., Michnick, D. Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res. 19, 4485-4490 (1991).
  41. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998).
  42. Londrigan, S. L., et al. Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets. Xenotransplantation. 14, 119-125 (2007).

Play Video

Cite This Article
Haddad-Tóvolli, R., Szabó, N., Zhou, X., Alvarez-Bolado, G. Genetic Manipulation of the Mouse Developing Hypothalamus through In utero Electroporation. J. Vis. Exp. (77), e50412, doi:10.3791/50412 (2013).

View Video