Summary

FRETはレシオメトリックで細胞周期のキナーゼおよびホスファターゼの活動を監視

Published: January 27, 2012
doi:

Summary

FRETに基づく記者はますます、生細胞におけるキナーゼとホスファターゼの活動を監視するために使用されています。ここでは、ターゲットのリン酸化の細胞周期依存性の変化を評価するためのFRETに基づくレポーターを使用する方法の方法を説明します。

Abstract

フェルスター共鳴エネルギー移動(FRET)ベースの記者1は、生きた細胞中の内因性キナーゼとホスファターゼ活性の評価を可能にする。このようなプローブは、一般的にリン酸化可能なシーケンスとリン結合ドメインによる介入CFPとYFPの変異体、で構成されています。効率(図1)、FRETの変化につながる、CFPとYFPの間の距離や方向の変化をもたらすリン酸化の際、プローブの変更のコンフォメーション、。いくつかのプローブは、PKA 2、PKB 3、PKC 4、PKD 5、ERK 6、JNK 7、CDK 18、オーロラB 9の記者とPLK1 9を含む複数のキナーゼとホスファターゼの活性のバランスを、監視し、過去10年間の間に発表されている。モジュラー設計を考えると、追加のプローブは、近い将来10で出現するものと予想される。

細胞周期の進行は、ストレスsignaliによって影響されるngは11パスウェイ。特に、細胞周期が細胞周期を通じて細胞の細胞がストレスを12から回復している。タイムラプスイメージングでは、したがって、特に注意を必要とする場合に比べて成長を摂動の間に異なる規制されています。レシオメトリックイメージングを採用する場合は特に対ノイズ比の高い信号を持つ2つのイメージが正しく結果を解釈するために必要とされるので、これは、問題になります。キナーゼとホスファターゼ活性で細胞周期依存性変化のレシオメトリックFRETのイメージングは、主に細胞周期8,9,13,14のサブセクションに限定されています。

ここで、我々は、人間の細胞周期を通してレシオイメージングを用いたFRETに基づくプローブを監視する方法について説明します。方法は、ライフサイエンスにおける多くの研究者に利用可能であり、顕微鏡や画像処理の専門知識を必要としない機器に依存しています。

Protocol

1。細胞にプローブを導入する FRETに基づくプローブとプラスミド耐性を付与するとの同時トランスフェクション細胞。目的の細胞型で効率的なトランスフェクションの方法を選択してください。 U2OS細胞の場合は、標準的なリン酸カルシウムトランスフェクション法では十分な結果が15を与える。 少なくとも7日間に適切な抗生物質でセルを選択します。これは豊かにプ…

Discussion

細胞周期を通してFRETを監視することで外部からの刺激に短期的応答を評価する際には、あまり重要な考慮事項が必要です。最初に、細胞周期の進行が容易にその光毒性を最小限にとどめる必要、ストレスのシグナリングによって摂動されています。第二に、すべての記者たちが潜在的にキナーゼ、ホスファターゼまたは相互作用ドメインを滴定することによって細胞プロセスに影響を与える…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者らは、スウェーデンの研究評議会、スウェーデン戦略研究財団、スウェーデン癌の社会、スウェーデンの小児がんの社会、オーケWibergs基盤とJeanssons基盤によってサポートされています。

Materials

Reagent Catalogue Number Company
Leibovitz L-15, no phenol red 21083-027 GIBCO, by Life Technologies
DMEM+Glutamax-I 31966 GIBCO, by Life Technologies
Fetal Bovine Serum (FBS) SV30160.03 HyClone
0.05% Trypsin EDTA SH30236.01 HyClone
Penicillin-Streptomycin SV30010 HyClone
DPBS 14287 GIBCO, by Life Technologies
Puromycin P8833 Sigma-Aldrich

References

  1. Sun, Y., Wallrabe, H., Seo, S. A., Periasamy, A. FRET microscopy in 2010: the legacy of Theodor Forster on the 100th anniversary of his birth. Chemphyschem. 12, 462-474 (2011).
  2. Allen, M. D., Zhang, J. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem. Biophys. Res. Commun. 348, 716-721 (2006).
  3. Kunkel, M. T., Ni, Q., Tsien, R. Y., Zhang, J., Newton, A. C. Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J. Biol. Chem. 280, (2005).
  4. Violin, J. D., Zhang, J., Tsien, R. Y., Newton, A. C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase. C. J. Cell. Biol. 161, 899-909 (2003).
  5. Kunkel, M. T., Toker, A., Tsien, R. Y., Newton, A. C. Calcium-dependent regulation of protein kinase D revealed by a genetically encoded kinase activity reporter. Journal of Biological Chemistry. 282, 6733-6742 (2007).
  6. Harvey, C. D. A genetically encoded fluorescent sensor of ERK activity. Proc. Natl. Acad. Sci. U.S.A. 105, 19264-19269 (2008).
  7. Fosbrink, M., Aye-Han, N. N., Cheong, R., Levchenko, A., Zhang, J. Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proc. Natl. Acad. Sci. U.S.A. 107, 5459-5464 (2010).
  8. Gavet, O., Pines, J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell. 18, 533-543 (2010).
  9. Fuller, B. G. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature. 453, 1132-1136 (2008).
  10. Ni, Q., Titov, D. V., Zhang, J. Analyzing protein kinase dynamics in living cells with FRET reporters. Methods. 40, 279-286 .
  11. Morgan, D. O. . The cell cycle : principles of control. , (2007).
  12. Lindqvist, A., Rodriguez-Bravo, V., Medema, R. H. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell. Biol. 185, 193-202 (2009).
  13. Gavet, O., Pines, J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell. Biol. 189, 247-259 (2010).
  14. Macurek, L. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature. 455, 119-123 (2008).
  15. van der Eb, A. J., Graham, F. L. Assay of transforming activity of tumor virus DNA. Methods. Enzymol. 65, 826-839 (1980).
  16. Lamprecht, M. R., Sabatini, D. M., Carpenter, A. E. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques. 42, 71-75 (2007).
  17. Roszik, J., Lisboa, D., Szollosi, J., Vereb, G. Evaluation of intensity-based ratiometric FRET in image cytometry–approaches and a software solution. Cytometry A. 75, 761-767 (2009).

Play Video

Cite This Article
Hukasova, E., Silva Cascales, H., Kumar, S. R., Lindqvist, A. Monitoring Kinase and Phosphatase Activities Through the Cell Cycle by Ratiometric FRET. J. Vis. Exp. (59), e3410, doi:10.3791/3410 (2012).

View Video